AQA Maths Decision 2 Mark Scheme Pack 2006-2015

Version 1.0: 0106

General Certificate of Education

Mathematics 6360

MD02 Decision 2

Mark Scheme

2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method								
m or dM	mark is dependent on one or more M ma	rks and is for n	nethod						
A	mark is dependent on M or m marks and	is for accuracy	7						
В	mark is independent of M or m marks and is for method and accuracy								
E	mark is for explanation								
or ft or F	follow through from previous								
	incorrect result	MC	mis-copy						
CAO	correct answer only	MR	mis-read						
CSO	correct solution only	RA	required accuracy						
AWFW	anything which falls within	FW	further work						
AWRT	anything which rounds to	ISW	ignore subsequent work						
ACF	any correct form	FIW	from incorrect work						
AG	answer given	BOD	given benefit of doubt						
SC	special case	WR	work replaced by candidate						
OE	or equivalent	FB	formulae book						
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme						
–x EE	deduct x marks for each error	G	graph						
NMS	no method shown	c	candidate						
PI	possibly implied	sf	significant figure(s)						
SCA	substantially correct approach	dp	decimal place(s)						

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD02

NIDUZ						T	T T C					
Q			Solution			Marks	Total			omment		
1(a)	Add extr	a row wi	ith all va	lues the	same	B1	1	Usually		to 26 an	d below	the
								other ro	WS			
(b)	Reduce of	columns	first			M1						
	0	0	0	4	4			26	26	26	26	26
	6	2	2	5	5			16	19	18	25	24
	5	3	5	0	4			22	21	20	26	25
	4	2	3	2	0	A1		21	22	23	21	24
	10	7	8	5	6			20	21	21	23	20
								26	26	26	26	26
	Reduce r	OWS				M1			marks av		for those	who
	0	0	0	4	4			reduce r	ows first			
	0	0	0	4	4							
	4 5	0 3	0 5	3 0	3 4	A1	4					
	4	2	3	2	0	Aı	4					
	5	2	3	0	1							
	3	2	3	U	1							
	Covering	zeros re	equires 4	lines so	adiust	M1						
	with leas					1411						
	With ious	or circi y i	01114111111	5 001118 2	•					I		
									II	I		
									I			
									•	•		
		0 (A1	2	Other so	dutions r	necihle k	nere	
	0 0	0 6	6			AI	2	Other so	nutions p	00331010 1	icic	
	4 0	0 5	5									
	3 1	3 0	4									
	2 0	1 2	0									
	3 0	1 0	1									
	Match											
	A-1; C=	= 2· D_3	· F_4			B1						
	л- 1, С -	2, D-3	, <i>L</i> = 1			וע						
	Evmonto	1 mainina	una tima a			D1	2					
	Expected 16 + 20 -			in		B1	2					
	10 + 20 -	±21 ± 20	<u> </u>	111	Total		9					
					า บเสโ		J					

MD02 (cont)	Solution	Marks	Total	Comments
2(a)	250050			3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	A 1	A and built		67 All built
	Network diagram	M1 A1	2	SCA Correct
(b)	Clear attempt to use Dynamic Programming Working backwards through network Month Already Machine Profit Total (Max*) Built Built	-		Complete enumeration M0 Forwards through network
	3 A & B C 64 64* A & C B 67 67* B & C A 69 69*	M1		A 52 52* B 47 47* C 48 48*
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1		AB 110 117 AC 106 116 six possibilities BC 101 111
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1		Correct max identified and rest correct BA 117*; CA 116*; CB 111*
	$ \begin{array}{c ccccc} C & \begin{cases} A & 68 & 68+67 = 135* \\ B & 63 & 63+69 = 132 \end{cases} $ $ - & A & 52 & 52+122 = 174 $	-		Exactly 3 totals considered
	1 - B 47 47+134 = 181			Considering previous max to combine
	- C 48 48+135=183*	A1	5	BAC 181; CAB 183; CBA 180 Everything correct and route clearly traceable
	The machine should therefore be built in the order C then A then B	B1		
	Max profit = £183000	B1	2	condone 183
	Total		9	

Q	Solution	Marks	Total	Comments
3(a)				
	B 4	D 8		F 2
	12 8	8 16	1	16 22
	/ [4 0]	8 16	1	10 12
		•	18	1
	A 2/		11	G 4 1 2
			*	
	0 2		X	16 22 24
	* *		1	
	0 6	p- 3		и 6
		L	>	a
	2 8	8 16		16 22
	Activity network SCA	M1		
		A1		almost correct (up to 2 slips)
		A1	3	all correct
<i>a</i> >		3.64		
(b)	Forward pass for earliest times	M1 A1	2	
		Al	2	
(c)	Backward pass	M1		
()	1	A1	2	
(3)		D.1		
(d)		B1	2	
	Minimum completion 24 days	B1	2	
(e)	Non-critical B E F G	M1		At least 3 activities and float in one
()	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			activity √ correct
		A1√	2	√ their earliest and latest times
(A)		M1		т
(f)	Sumbar str 4	M1 A1		Histogram ≤11 Correct
	with the second of the second	M1		Rest as histogram – generally start
	1			activities ok
	Thromodogo			
		A1	4	All correct
	Pasauraa histogram			
	Resource histogram			
(g)	Problems with D & E solved by E coming	M1		
(8)	after D			
	Problem at 16-18 days with F can be	A1		
	solved by moving F to 20-22	D.1	2	
	Must overrun by equivalent to duration of <i>E</i> (3 days)	B1	3	
	$\cup U_{i}\cup V_{i}\cup V_{i}$	i l		

MD02 (cont Q	Solution	Marks	Total	Comments
4(a)	S 2 3 1 8 1 8 1	B1 B1 B1 B1	4	MN NT PQ NP
(b)(i)	8 2 1 0 0 3 1 3 1 4 10 1	M1		initial flow indicated as surplus forward and backward flows
	e.g. SMNT 2 SPQT 2	M1 A1 A1		use of flow augmentation one flow correctly identified all possible flows correct
	S 0 0 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	M1 A1	6	amending flows (dep on first M1) final situation with saturation at M and P
(ii)	Max flow - 14 8 8 10 8 10 10	B1	2	
(c)	Cut through 2 of their saturated arcs $ \left\{ S,M \right\} / \left\{ P,N,Q,T \right\} $ or cuts through $MN, MP \& SP \right\} $	M1 A1	2	cut on original network described or drawn
	Total		14	

MD02 (c	UIII)		~					3.7 3	7F. 4 3	
Q			S	olutior	1			Marks	Total	Comments
5(a)	Introd	ducing	slack	variabl	es			M1		
	<i>P</i> 1	$\boldsymbol{\mathcal{X}}$	<i>y</i> –2	z -4	$r \\ 0$	S	value			
	1	-3	-2	<u>-4</u>	0	0	0			
	0	1	4		1	0	0			
	0	1	4	$\binom{2}{}$	1	0	8			
	0	2	7	3	0	1	21	A2	3	-1 EE
		_	,	5	Ü			112	5	1 22
(b)	Choo	sing co	rrect r	oivot in	z-col	umn		M1		and perhaps dividing by 2
()		U								
	1	-1	6	0	2	0	16			
	0	\bigcap	2	1		0	4			
		$\left(\frac{1}{2}\right)$			$\frac{1}{2}$			M1		row operations
	0	$\frac{1}{2}$	1	0	$-\frac{3}{2}$	1	9			
		2			$\frac{-}{2}$			A1	3	correct
(c)(i)				lumn f	or pive	ot		M1		
	Choo	sing co	_					A1		
	1	0	10	2	3	0	24	M1		row operations
	0	1	4		1	0	8	A1		top row
	0	0	-1	-1	-2	1	5	A1	5	third row
(::)	Vacan	ntime1						B1√		
(ii)	Yes optimal No negative values in top row								2	
	No ne	egative	value	s in top	row			E1	2	
							7D ()		12	
							Total		13	

Q Q	Solution	Marks	Total	Comments
6 (a)				
	(-2,2,4) < $(2,4,5)$	F.4		
	So S_1 dominated by S_2	E1		
	$ \begin{pmatrix} 4 \\ 5 \\ 2 \end{pmatrix} > \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} $			note > sign
	5 > 4			note > sign
		F.4		
	So C_3 dominated by C_2	E1	2	
(b)	C_1 C_2			
	$\mathbf{s} \cdot \begin{bmatrix} \mathbf{s}_1 \\ \mathbf{s}_2 \end{bmatrix}$			
	2×2 game now $\begin{bmatrix} 2 & 2 & 4 \\ 2 & 1 & 4 \end{bmatrix}$			
	2×2 game now $\begin{bmatrix} S_2 \\ 2 \\ 5 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 5 & 1 \end{bmatrix}$			
	Minimum of rows $(2,4) = 2$	M1		correct method for either S or C
	Minimum of $(5,1) = 1$			
	Choose maximum = $\begin{pmatrix} 2 \end{pmatrix}$	A1		play safe for Sam is S_2
	Max of column $1 = \max(2,5) = 5$			
	Max of column $2= \max (4,1) = 4$			
	Choose minimum = 4	A1		play safe for computer is C_2
	Since $2 \neq 4 \Rightarrow$ not stable solution	E1	4	
(c)(i)	Computer picks C_1			
	Expected game = $2p + 5(1 - p)$	M1		
	=5-3p	A1		
	Computer picks C_2			
	Expected gain $=4p+(1-p)$		2	
	=1+3p	A1	3	
(ii)	Best mixed strategy			
	5 - 3p = 1 + 3p	M1		
	$\Rightarrow p = \frac{2}{3}$		2	
	3	A1	2	
(iii)	Expected points gain			
(111)	• •			$\left(\begin{array}{ccc} & & & & \\ & & & & \\ & & & & \end{array} \right)$
	$=5-3\times\left(\frac{2}{3}\right)$			Or $1+3\left(\frac{2}{3}\right)$
	= 3	В1	1	
			45	
	Total		12	
	Total		75	

Version 1.0: 0706

General Certificate of Education

Mathematics 6360

MD02 Decision 2

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method								
m or dM	mark is dependent on one or more M max	rks and is for n	nethod						
A	mark is dependent on M or m marks and	is for accuracy							
В	mark is independent of M or m marks and is for method and accuracy								
Е	mark is for explanation								
$\sqrt{\text{or ft or F}}$	follow through from previous								
	incorrect result	MC	mis-copy						
CAO	correct answer only	MR	mis-read						
CSO	correct solution only	RA	required accuracy						
AWFW	anything which falls within	FW	further work						
AWRT	anything which rounds to	ISW	ignore subsequent work						
ACF	any correct form	FIW	from incorrect work						
AG	answer given	BOD	given benefit of doubt						
SC	special case	WR	work replaced by candidate						
OE	or equivalent	FB	formulae book						
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme						
–x EE	deduct x marks for each error	G	graph						
NMS	no method shown	c	candidate						
PI	possibly implied	sf	significant figure(s)						
SCA	substantially correct approach	dp	decimal place(s)						

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD02

Q	Solution	Marks	Total	Comments			
1(a)	Empliest Start time Interest timesh trans C 2 8 14	7 7 7	B 17 E 10 17 F 4 14	7 21 3 24			
		M1 A1 A1	3	SCA (almost correct 2 slips) Correct			
(b)	Forward pass for earliest start times	M1 A1	2	All correct			
(c)	Backward pass for latest finish times	M1 A1	2	All correct			
(d)	Critical path ABEHI	B1	1				
(e)		M1 A1	2	At least one float time correct All correct			
(f)	7	F		G			
			D				
	A B	E	- 22	H I			
	0 2 7	10	14	17 21 24			
	'their'critical path on chart C from 6 to 14 (with space 2-6)	B1√ M1		One other activity (condone no slack or earliest start)			
	D from 9 to 17 (with slack 7-9) F & G from 10 to 21 with appropriate slack	A1 A1	4	2 other non critical activities All correct			
	Total		14				

Q (cont)	,		So	lution			Marks	Total			Comme	ents	
2(a)	Add ex	ktra ro				qual	B1	1	Usually	y + 25 aı	nd below		
						•			18 23 20 21 25	15 24 16 17 25	19 22 18 18 25	20 25 22 23 25	17 23 19 20 25
(b)	Reduc	e colu	mns fir	rst			M1		Do not	award i	f full rov	v of zero	s added
	reduc	P	Q	R	S	T	1411		Bonot	awara r	I Tull Tov	V OI ZCIO	s daded
	Α	0	0	1	0	0							
	В	5	9	4	5	6							
	C	2	1	0	2	2							
	D	3	2	0	3	3	A1						
	(E)	7	10	7	5	8							
	Reduce rows next						M1			2 marks row firs	available t	e for thos	se who
		0	0	1	0	0			Todaco				
		1	5	0	1								
		2	1	0	2	2 2 3				•			
		3	2	0	3	3				•			
		2	5	2	0	3	A1√						
									One em	ror only	1 .		
						so adjust							
	with le		-				M1				of zeros,		
		P	Q	R	S	T					adjustm	ent and	A1 for
	A R	0	0 4	2 0	1 1	<u>0</u> 1	A1√			orrect ma error onl			
	C	0	0	0	2	1	A1√		It one e	21101 0111	У		
	D	2	1	0	3	2							
	E	1	4	2	3	2							
	Match	: A- T	im; B-1	Phil; C	:-Quin	; D-Ros	B1						
				-	-	= 74 secs	B1	8					
						Total	21	9					

MD02 (cont)				
Q	Solution	Marks	Total	Comments
3(a)	Working back from H			Alternatively, from A
	Starting from A (network)			
	2			
	$B 8^1$ $F 5^2 4^3$	B1		First (stage) costs
		M1		second stage attempt
	$C 7^{4} 6^{2}$ $H 16^{2} 14^{4} 14^{5}$	M1		second stage indicated eg 15 ² etc
		M1		Third stage attempt (two numbers crossed
				out)
		A1		Final value of 14 Dep on M2 earned
	$D9^{4} 6^{2} 5^{3}$ $G 12^{2} 8^{4}$	A1	6	All "correct" with 2 clear routes to cost
				of 14
	$E 8^1$			(or equivalent in tabular form)
(b)	Min cost = 14	B1		
	ABCFH	B1		
	and ABCDGH	B1	3	
	Total	2.	9	
4(a)	D	B1	1	
1(11)		D1	1	
(b)	(17 + 25 + 35 + 13 + 12 + 13 = 115)	B1	1	
(6)	(17 + 23 + 33 + 13 + 12 + 13 - 113)	D1	1	
(c)	$ABD_{\text{max}} = 25$; $GED_{\text{max}} = 12$	B1B1	2	
(6)	$ADD_{\text{max}} = 23$, $OED_{\text{max}} = 12$	DIDI	2	
(d)(i)	* * * * * * * * * * * * * * * * * * *			
	12 2/2 1/2	M1		Forward and backward flows
	15 150	M1		Adjusting flows on diagram
	17/1	M1		Routes and flows in chart
	110	A1		One correct other than ABD, GED
	"	A1		Another correct
	Route ABD GED GFD GD AD AFD GEBD	711		7 Mother correct
	Flow 25 12 16 13 17 15 7	A1	6	All correct
	10. 20 12 10 13 17 10 7	711		
(ii)	Total = 105	B1		
	Max flow			
	B 7 B			
	25 / 12 / 16			
	7 2 12			
	1	B1	2	
	10 10	D1	2	
	15 10			
	F			
(iii)	Cut through AF, AD, BD, DE, DG, and	M1		Through 3 saturated arcs (fairly generous)
(111)	GF	A1	2	Correct
		711	2	
(e)	Reduce max flow by their EG	M1		Reduce by 4 since everywhere else
	changing 19 to 15	1411		saturated
	$\Rightarrow \text{New max} = 101$	A1	2	Correct answer \Rightarrow 2 marks
	Total		16	
	Iotai		10	l

Q			S	oluti	on			Marks	Total	Comments
5(a)	3x+7y	$v \leq 3$	3					M1		One correct inequality, or all using <
	x+2y	≤ 1 (0							
	2x+7y	y ≤ 26	5					A 1	2	All correct
(b)(i)	Compa		•	_				E1		
	Choose pivot =		llest p	ositiv	e valu	e ⇒		E1	2	
(ii)	P 1 0 0	x 0 0 1	y -1 1 2	r 0 1 0	s 4 -3 1 -2	t 0 0 0	Value 40 3 10 6	M1 A1 A1		Row operation Correct one row (other than pivot row) All correct
	next y	pivot	on 3					M1		
	1	0	0	0	3		42			
	0	0	0		5	-	1	m1 A1		Row operation Correct one row (other than pivot row)
	0	1	0	0	$2\frac{1}{3}$	$-\frac{2}{3}$	6	A1	7	All correct (condone multiples of given
	0	0	1	0	$-\frac{2}{3}$		2			rows) (maximum 6 if <i>y</i> -pivot used first)
(iii)	No neg		numb	er in	top ro	w		E1		
	$P_{\text{max}} = x = 6$		2					B1√ B1√	3	ft if M3 scored and optimum reached
	$\lambda = 0$	<i>y</i> - 2	<u>~</u>				Total	DI√	14	

Q Q	Solution	Marks	Total	Comments
6(a)	Gain for Rowan +gain for Colleen in each strategy = 0	E1	1	Gain for one = loss of other
(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1		minimum of rows & max of columns or maximum of minima or minimax
	Max 1 5 4	A1		All values correct (seen) or words maximin and minimax highlighted
	$1 \neq -1 \Rightarrow$ no stable solution	E1	3	
(c)	R ₃ dominates R ₁			
	(-3, -4, 1) < (-2, -3, 4) so never play R ₁	E1	1	
(d)(i)	R chooses R_2 with prob p \Rightarrow choose R_3 with prob $1-p$ \Rightarrow expected gain when C plays $C_1: p-2(1-p)=3p-2$	M1		Attempt at one expression
	$C_2: 5p-3(1-p) = 8p-3$ $C_3: -p+4(1-p) = 4-5p$	A1		All correct unsimplified
	Plot expected gains for $0 \le p \le 1$	M1		
	$ \begin{array}{c c} 4 \\ 0 \\ -2 \\ -3 \end{array} $	A1		Condone mirror image
	Choosing their "highest" point $C_1 \& C_3$ intersect $\Rightarrow 3p - 2 = 4 - 5p$	M1		Any 2 lines
	$\Rightarrow p = \frac{3}{4}$	A1		
	$\Rightarrow \operatorname{play} R_{2} \text{ with prob } \frac{3}{4} $ and R ₃ with prob $\frac{1}{4}$	E1√	7	Statement of strategy
(ii)	Value of game is $3 \times \frac{3}{4} - 2 = \frac{1}{4}$	B1	1	CSO or equivalent, eg 0.25
	Total		13	
	TOTAL		75	

Version: 1.0 0107

General Certificate of Education

Mathematics 6360

MD02 Decision 2

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
A	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks an	d is for method	d and accuracy				
E	mark is for explanation						
$\sqrt{\text{or ft or F}}$	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct x marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Jan 07

MD02

Q	Solution	Marks	Total	Comments
1(a)	Network attempted	M1		SCA
	up to 2 slips (boxes or arrows)	A1		
	correct network	A1	3	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F 1 8	8	J 10 3 13
(b)	Forward pass	M1		1
	correct	A 1	2	
(c)	Backward pass	M1		
	correct	A1	2	
(d)	Minimum completion time: 13 weeks	B1		
	Critical paths: ACGIJ	B1		
	BEGIJ BEHJ	B1 B1	4	
	Total	וט	11	

MD02 (con Q	Solution	Marks	Total	Comments
2(a)	Hungarian algorithm minimises	E1		
	15 - x gives measure of criteria NOT met which need minimising in order to maximise scores	E1	2	idea of high becoming low, etc.
(b)	2 4 6 5 2 0 3 3 4 3 3 5 7 1 1 4 3 2 1 5 3 1 1 2 1 0 2 4 3 0 0 3 3 4 3 2 4 6 0 0 3 2 1 0 4 2 0 0 1 0 Zeros can be covered with only 4 lines so adjustment needed	B1 M1 A1		array giving $15 - x$ reduce rows (or columns then rows) reduced array correct $ \frac{1}{2} = 0 $
	Reduction by subtracting 1 from each uncovered element and adding 1 to each element at intersection of two lines Matching on particular zeros Alex \leftrightarrow 5 Don \leftrightarrow 3 Bill \leftrightarrow 1 Ed \leftrightarrow 2	M1 A1 M1		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Cath ↔ 4 If adjustment not done correctly and matching made, award B1 for 3 correct and B1 for rest correct	A1	8	Award last 2 marks in whichever way benefits candidate most
(c)	Deleting row 2 and column 4 either in final matrix or reworking Final solution: A \leftrightarrow 1	M1 A1	3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	If no method award B2 if matching is all correct Total		13	

Q	-,		So	olution	1			Marks	Total	Comments
3(a)	P	х	у	Z	S	t	Value			
	1	-5	-8	-7	0	0	0	M1		SCA
	0	3	2	1	1	0	12	A2	3	-1 EE
			$\overline{}$					A2	3	- I EE
	0	2	(4)	5	0	1	16	_		
(b)(i)	$\frac{12}{2} = \frac{1}{2}$	6; $\frac{16}{4}$	=4 ar	nd 4 <	< 6			E1	1	
	2	4								
(ii)	1	- 1	0	3	0	2	32	M1		using 4 as pivot and possibly dividing
	0	(2)	0	$-1\frac{1}{2}$	1	$-\frac{1}{2}$	4	A1		third row by 4 top row correct
	0	$\frac{1}{2}$		$1\frac{1}{4}$		$\frac{1}{4}$	4	A1		
		2		4		4	· .	Al		second row correct; may have 0 2 4 5 0 1 16
	ahaia	e of piv	rat fra		1,,,,,,,			M1		pivot = (2) identified and used
	CHOIC	e or pro	vot no	III λ - C0	iuiiiii			1V1 1		pivot – (2) identified and used
	1	0	0	$2\frac{1}{4}$	$\frac{1}{2}$	$1\frac{3}{4}$	34			
	0	1	0	$-\frac{3}{4}$	$\frac{1}{2}$	$-\frac{1}{4}$	2	m1		row operations
	0	0	1	$1\frac{5}{8}$	$-\frac{1}{4}$	$\frac{3}{8}$	3	A1	6	correct or scaled up
							_	711		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
				_						
(iii)	Max $x = 2$	P = 34 $y = 3$	7 - 0	}				B1√ B1	2	all correct
	$\lambda - \lambda$, <i>y</i> – 3	, 2 – 0	' J				Di	2	an concet
(iv)	Yes -	no neg	gative v	values	in firs			E1√	1	no – if negatives in top row
							Total		13	

Q Q	Solution	Marks	Total	Comments
4(a)(i)	Row min - 4 - 2 - 1	M1		Attempt at row minimum and column maximum
	$\begin{array}{cccc} & & & & & & & & & & & & \\ & & & & & &$	A1		all figures correct
	min (col max) = max (row min) \Rightarrow stable solution	E1	3	
(ii)	Ros plays III and Col plays Y value of game = -1	B1 B1	2	
(b)(i)	Ros plays R_1 with probability p and R_2 with probability $1-p$			
	Expected gains when Col plays:			
	$C_1: 3p-2(1-p)=5p-2$			
	$C_2: 2p - (1-p) = 3p - 1$	M1		attempt at least 2
	$C_3: p + 2(1-p) = 2-p$	A1		correct unsimplified
	Plot expected gains against p for $0 \le p \le 1$	M1		
	3- 2- 1- 0-1- -2-	A1		correct (must see 0 or 1 on <i>P</i> axis, or implied by their numbers) A0 if not possible to see highest point of region being correct
	Choose highest point of region below lines $\Rightarrow 3p-1=2-p$	M1		must be this pair of lines or their highest point
	leading to $p = \frac{3}{4}$	A1		
	Therefore Ros plays R_1 with prob $\frac{3}{4}$			
	and plays R_2 with prob $\frac{1}{4}$	B1√	7	ft their p from any lines
(ii)	Value of game = $3 \times \frac{3}{4} - 1$			
	$\operatorname{or}\left(2-\frac{3}{4}\right) = 1\frac{1}{4}$	B1	1	
	Total		13	

ID02 (con Q			Solution		Marks	Total	Comments
5(a)			•	hine of 5 hours alue is only 4	M1 A1	2	Reasonable understanding Mention of 4 and 5 hours and clear idea that minimum is larger in <i>SAET</i>
(b)	Stage	Initial State	Action	Value	M1		General idea of stage and state
	1	C D E	CT DT ET	7* 9* 5*	A1		First stage correct (may be reversed)
	2	A	AC AD	min (4, 7) = 4 min (4, 9) = 4	M1		Finding least value from 2 legs
			AE	min(5, 5) = 5*	m1		Finding max of minima (star values)
		В	BC BD BE	min (6, 7) = 6* min (5, 9) = 5 min (7, 5) = 5	A1		All values in second stage correct
	3	S	SA SB	min (9, 5) = 5 min (8, 6) = 6*	A1		All values in third stage correct
					A1		All values correct (inc max of min all correct) and minimum comparison clearly shown at each stage, particularly (9, 5) and (8, 6) in third stage
	Maximii	n route is	SBCT		B1	8	Award B1 even without dynamic programming
				Total		10	

MD02 (cont Q	Solution	Marks	Total	Comments
6(a)(i)	15 + 0 + 14 + 7 + 9 = 45	B1	1	
	Marianam flam < 45) A 1		z thair malue ar z 45
(ii)	Maximum flow ≤ 45	M1 A1	2	≤ their value or < 45
		Aı	2	correct
(b)	SABT flow 10	B1		one correct
	SDET flow 14 SFT flow 9	B1	2	two more correct
	SF I HOW 9	Б1	2	two more correct
	(may appear in table below)			
(c)(i)				I
. , , ,	0	B		
	A +=	1		
	10	/ \	1	
	34 / 00/	/	1	
	16///	4	1. 11	1,5
	100 67	. ·	1/10	1/2
	1700		1,1	10
	1 =	0	1.	
	5 14	*14	-	4.
		14	1	1415
	2/1/2 0		/	
	8//10	7,	1/4	06.
	9	,	141	1810
		/	/	-13
		1/		
		-		
		*		I
	Additional route	M1		
	with correct flow	A1		
	one more correct route and flow	A1		
	table complete	A1		correct total flow of 40
	correct use of potential and used flows	M1	(on network (may use double edges)
	values correctly updated	A1	6	strict
	Danta Flare			
	Route Flow SABT 10			
	SDET 10			several possibilities
	SFT 9			
	SADFT 6			
	SADFET 1			

Q	Solution	Marks	Total	Comments
6 (cont) (c)(ii)	17 7 0 14 D	B I [‡]	10	10 15 T
(iii)	Maximum flow = 40 Network showing flow of 40 Cut through saturated arcs	B1 B1 M1	2	
	AB, BD, DE, DF, SF Minimum cut shown to be 40 with statement linking to maximum flow	A1	2	
	Total		15	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MD02 Decision 2

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
A	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks an	d is for method	l and accuracy				
E	mark is for explanation						
$\sqrt{\text{or ft or F}}$	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct x marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

June 07

MD02

The image is a constant of the image is a con	Q	Solution	Marks	Total	Comments
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1(a)	Predecessors A - B - C A, B D B E B F C G D H D, E I F, G J G, H		2	Up to 2 slips All correct
A1 All correct Finish times – up to 1 slip; FT 'their 16' A1 All correct; CSO (c) Critical path B D H J K B1 B1 2 (d) Greatest float at E B1 $\sqrt{}$ B1 $\sqrt{}$ B1 $\sqrt{}$ Critical path at E B1 $\sqrt{}$ B1 $\sqrt{}$ B1 $\sqrt{}$ B1 $\sqrt{}$ Critical path at E B1 $\sqrt{}$ B1 $\sqrt{}$ B1 $\sqrt{}$ Critical path at E B1 $\sqrt{}$ B1 $\sqrt{}$ B1 $\sqrt{}$ Critical path at E B1 $\sqrt{}$ B1 $\sqrt{}$ Critical path at E Critical path at E B1 $\sqrt{}$ Critical path at E Critical path at E	(b)	B D 0 1 1 1 5 6	5 5 1 G 6 3 1 H 6 4 1		J K 15 1 16
Minimum time 16 days (d) Greatest float at E Value = 2 $B1\sqrt{2}$ $B1\sqrt{2}$ $B1\sqrt{2}$			A1 M1	4	All correct Finish times – up to 1 slip; FT 'their 16'
Value = 2 $B1\sqrt{2}$	(c)			2	
	(d)			2 10	

MD02 (cont	Solution	Mordes	Total	Comments
Q	Solution	Marks	Total	Comments
2(a)	10 11 8 12 5 11 5 11 6 7 12 8 7 11 4 10 9 14 10 6 9 9 7 8 9			
	5 6 3 7 0 6 0 6 1 2 8 4 3 7 0 4 3 8 4 0 2 2 0 1 2	M1 A1		Row reduction up to 2 slips Correct
	Printed answer	A1	3	Columns AG
(b)	3 6 3 6 0 4 0 6 0 2 6 4 3 6 0 2 3 8 3 0 0 2 0 0 2	В1	3	Covering zeros with 3 lines
	1 4 1 4 0 4 0 6 0 4 4 2 1 4 0	M1		Subtract 2 from uncovered and add 2 to double covered
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1		Table correct
	Can now be covered with 4 lines, so reduce again	M1		Subtract 1 from uncovered; Add 1 to double covered
	1 3 0 3 0 0 0 3 0 3 0 5 0 5 0 6 0 5 4 1 0 3 0 0 0 3 1 0 3 0 0 0 0 0 0 1 6 1 1 1 1 2 0 0 5 0 5	A1	5	
(c)	Matching $A - 4$, $B - 2$, $D - 5$ And either $C - 1$, $E - 3$ or $C - 3$, $E - 1$	B1 B1 B1	3	
(d)	(10+5+8)+(8+4)=£35	B1	1	
	Total		12	

MD02 (cont	Solution	Marks	Total	Comments
3(a)(i)	Min $R_1(5, 2, -1) = -1$	Warks	Total	Comments
- (-)()	Min $R_2(-3,-1,5) = -3$			
	Min $R_3(4, 1, -2) = -2$	E1		
	$\operatorname{Max} \operatorname{min} = -1$	LI		
	\Rightarrow Play safe strategy R ₁	В1	2	
(ii)	Max $C_1 = 5$; max $C_2 = 2$; max $C_3 = 5$			
	Min $(5, 2, 5) = 2$	M1		
	$2 \neq -1 \Rightarrow$ no stable solution	A1	2	
(b)	$R_3(4, 1, -2) < R_1(5, 2, -1)$	E1	1	
(c)(i)	C ₁ played, expected gain for Rose:			
	5p + -3(1-p)	M1		Any correct expected gain unsimplified
	=8p-3	A1		One correct simplified
	$C_2: 2p - (1-p) = 3p - 1$			
	$C_3: -p + 5(1-p) = 5 - 6p$	A1	3	All correct simplified
(ii)	Expected gain 5			
	<u>A</u> 2	M1		Plotting at least 2 lines
	0 -1 -3	A1	2	All correct with values at $p = 0$ and $p = 1$ indicated
(iii)	Choosing A – highest point in feasible region			
	$\Rightarrow 3p - 1 = 5 - 6p$ $9p = 6$	M1		Solving this equation
	$\Rightarrow p = \frac{2}{3}$	A 1		CSO
	\Rightarrow Rose plays R ₁ $\frac{2}{3}$ of time			
	and $R_2 \frac{1}{3}$ of time	E1√	3	
(iv)	Value of game = $3 \times \frac{2}{3} - 1 = 1$	B1	1	Or $5 - 4 = 1$
	Total		14	

MD02 (cont)							1		
Q				Soluti	ion			Marks	Total	Comments
4(a)		$2y \le 36$)					M1		One correct, or all inequalities with <
	$x + y \le 20$									
	4x +	<i>y</i> ≤ 39						A 1	2	All correct
(b)(i)	(b)(i) Choosing 2 as pivot							M1		And perhaps dividing second row by 2
	P	x	у	S	t	и	value			
			•					m1		Row operations
	1	$-\frac{1}{2}$	0	$2\frac{1}{2}$	0	0	90			
	0	$\frac{1}{2}$	1	$\frac{1}{2}$	0	0	18	A1		One row correct
	0		0	- 1	1	^	2	711		one for confect
	0	$\left(\frac{1}{2}\right)$	0	$-\frac{1}{2}$	1	0	2			
	_		_		_					
	0	$3\frac{1}{2}$	0	$-\frac{1}{2}$	0	1	21	A1	4	All rows correct
										(condone multiples of rows)
(ii)		tive va								
	\Rightarrow o	ptimur	n not	yet rea	ached			E1	1	
			,				`	3.54		
(c)(i)	New	pivot	(x-c)	columi	1, 3rc	d rov	v)	M1		And perhaps multiplying by 2
	P	\boldsymbol{x}	\mathcal{Y}	S	t	и	value	m1		Row operations
	1	0	0	2	1	0	92	1111		Row operations
	1	Ū	Ü	_		O) <u>-</u>			
	0	0	1	1	-1	0	16	A1		One row correct
	0	1	0	-1	2	0	4			
				_	_		_			
	0	0	0	3	- 7	1	7	A1	4	All rows correct
(::)	Ontic		و ماليو	raaak a	a			E1		(Or not? if their tableau wrong)
(ii)	· / -									(Or not? – if their tableau wrong)
	P = 92, x = 4, y = 16 s = 0, t = 0, u = 7							B1√	2	FT 3 values
	S = 0	t = 0	, u =	7 J				B1	3	CSO (final tableau must be correct)
							Total		14	

Q Q)		Solut	ion		Marks	Total	Comments			
5(a)	(May use correct network instead of table but must work backwards through network)										
	A built C_{490} B built C_{490} A and C_{520} B built C_{500} A and C_{500} A and C_{500} B built C_{500} B and C_{500}										
	Month 3	Already Built A and B A and C B and C	Machine Built C B A	Cost (£) 520 500 510	Total Cost (* = min) 520* 500* 510*	B1		Month 3 costs correct			
	2	A B	B C	440 500 510	440 + 520 = 960* 490 + 500 = 990 510 + 520 = 1030						
		С	A B	500 520 490	500 + 510= 1010* 520 + 500 = 1020 490 + 510 = 1000*	M1 A1		6 values in month 2 (4 correct) All correct			
	Order i	- - - s <i>BCA</i>	A B C	500 440 475	500 + 960 = 1460 440 + 1010= 1450* 475 + 1000= 1475	M1 A1 B1	6	3 values using minimum from month 2 All correct and asterisks correct			
(b)	Choosi		values at age 1	t stage	e 2	B1√ M1 A1	-	990*, 1030*, 1020* 500 + 990 = 1490 440 + 1030 = 1470 475 + 1020 = 1495*			
	Maxim	um prof	it CAB		Total	B1	4 10	.,,,			

Q) Solution	Marks	Total	Comments
6(a)(i)	5 + 8 + 16 - 3 = 26	B1	1	
(ii)	Max flow ≤ 26	E1√	1	
(b)	$M \longrightarrow 3$	N	4	B1 <i>MP</i> – 9
	$S = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	4 v	T 6	B1 <i>PN</i> – 5 B1 <i>NR</i> – 4
	Q (12)	R		B1 <i>QR</i> – 12
(c)(i)	$S = \begin{bmatrix} 0 & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & $	N 12 4 3 2 2 3 6 8	4 8 8 8 7 0 T	M1 initial flow – forward and backward 6 pairs correct A1 correct OM 2 & 3; MN 2 & 1 NT 5 & 0; MP 3 & 1 SQ 3 & 2; PQ 3 & 1 PN 3 & 1; QR 1 & 5 NR 2 & 1; RT 0 & 6
(ii)	Adjusting flows on network	M1A1	2	
	PathFlowSMNT2	B1		First correct path and flow
	SQPNT 1 SQRNT 1	B1 B1	5	Second correct Rest
(iii)	$S \longrightarrow 10$ $S \longrightarrow 10$ $S \longrightarrow 10$ $S \longrightarrow 10$	3 V	8 T	M1 6 flows correct A1 all correct Or $M ightharpoonup 4 ightharpoonup 7 ightharpoonup 7 ightharpoonup 8 ightharpoonup 8 ightharpoonup 8 ightharpoonup 8 ightharpoonup 9 ightharpoonup$
	Q 13		2	
	Total		15	
-	TOTAL		75	

General Certificate of Education

Mathematics 6360

MDO2 Decision 02

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX

Key to mark scheme and abbreviations used in marking

M	mark is for method							
m or dM	mark is dependent on one or more M marks and is for method							
A	mark is dependent on M or m marks and is for accuracy							
В	mark is independent of M or m marks and is for method and accuracy							
Е	mark is for explanation							
$\sqrt{\text{or ft or F}}$	follow through from previous							
	incorrect result	MC	mis-copy					
CAO	correct answer only	MR	mis-read					
CSO	correct solution only	RA	required accuracy					
AWFW	anything which falls within	FW	further work					
AWRT	anything which rounds to	ISW	ignore subsequent work					
ACF	any correct form	FIW	from incorrect work					
AG	answer given	BOD	given benefit of doubt					
SC	special case	WR	work replaced by candidate					
OE	or equivalent	FB	formulae book					
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme					
–x EE	deduct x marks for each error	G	graph					
NMS	no method shown	c	candidate					
PI	possibly implied	sf	significant figure(s)					
SCA	substantially correct approach	dp	decimal place(s)					

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD02

MIDUZ				
Q	Solution	Marks	Total	Comments
1(a)	G, H and I in correct place	M1		
	Lines (with arrows) correct	A1	2	
(b)	Forward pass (no more than 1 error FT)	M1		See below
	Early start times correct	A1		
	Backward pass (no more than 1 error FT)	M1		
	Latest finish times correct	A1	4	
(c)	Correct critical path: ACEGI	B1		
	Correct minimum time: 25 days	B1	2	
(d)	"Their" critical activities	B1√		See below
	Block $0 \le t \le 10$	B1		
	$10 \le t \le 11$	B1		
	All correct including labels	B1	4	CSO
(e)	Problem with F or day 11	M1		
	Delay start of D (by 2 days),			
	then G and I (by 1 day)	A1		
	Extra time 1 day	B1	3	
	Total		15	

Q		Solution		Marks	Total	Comments
2(a)	Ash					
	Task 1 14	10 12	12 14			
	Task 2 11	13 10	12 12			
	Task 3 13	11 12	** 12			
	Task 4 13	10 12	13 15	D.1	4	
	15	15 15	15 15	B1	1	Extra row of equal non-zero values
						(expect 15, 15,)
(b)	Ash	Bob Col	Dan Emma			
(6)	Task 1 3	0 2	0 2	M1		Attempt to reduce columns
	Task 2 0	3 0	0 0	1,11		Thempt to reduce commis
	Task 3 2	1 2	** 0	A1		Correct
	Task 4 2	0 2	1 3			
	4	5 5	3 3			Final row may be different
		l l	1			
	Ash	Bob Col	Dan Emma			
	Task 1 3	0 2	0 2	A1		Reduce rows correct
	Task 2 0	3 0	$\begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$	711		reduce to we contect
	Task 3 2	1 2	** 0			
	Task 4 2	0 2	1 3			
	1	2 2	0 0	B1		Zeros can be covered with 4 lines
						(shown)
	Ash			3.54		
	Task 1 2	0 1	0 2	M1		Adjustment
	Task 2 0	4 0	1 1			reducing uncovered elements by 1 and
	Task 3 1	1 1	** 0			increasing double uncovered by 1
	Task 4 1	0 1	1 3	A1		Correct
	0	2 1	0 0	AI		Correct
	Matching E3,	B4, C2, D1		B1		
	Total time 44			B1	8	
(c)	No, time cann	ot be improv	ed	B1		
	** became 0 f				_	
	B must take ta	$ask 4 \Rightarrow D m$		E1	2	Or other correct reasoning
			Total		11	

O O	Solution	Marks	Total	Comments
3(a)	Rob's gain = Con's loss	E1	1	Zero-sum explained
	(at each entry of matrix)			Rob's winnings + Con's winnings = 0
				(for every pair of strategies)
(b)	min	D.1		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1		min of rows and max of columns
	3 -3 -1 -3			All values correct (seen)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1		maximin = -2
	max 3 5 3			$ \begin{vmatrix} \text{minimax} = -2 \\ \text{minimax} = 3 \end{vmatrix} $ either correct
	2 4 2	T7.1	2	IIIIIIIIII — 3)
	$-2 \neq 3$	E1	3	
	⇒ no stable solution			
(c)	R ₃ dominated by R ₁			
(c)		E1	1	
	$(-3, 3, 2) < (-2, 5, 3)$ so never play R_3	EI	1	
(d)(i)	Choose R with probability p			
(u)(1)	Choose R ₁ with probability p			
	and R_2 with probability $1-p$			
	Expected gain when C plays:			
	C_1 : $-2p + 3(1-p) = 3 - 5p$	M1		Attempt at one expression
	,	IVII		Attempt at one expression
	$C_2: 5p-3(1-p)=8p-3$			
	$C_3: 3p - (1-p) = -1 + 4p$	A1		All correct unsimplified
	+5 C ₂			
		M1		Platting asymptod sain for 0 < n < 1
	+3 C,	IVII		Plotting expected gain for $0 \le p \le 1$
	0	A1		Correct with values at $p = 0$ and $p = 1$
	-1			clear
	-2 C ₁			
	3 - 5p = 8p - 3	M1		Choosing C ₁ and C ₂ intersection or their
		1711		highest point
	6			inghest point
	$\Rightarrow p = \frac{6}{13}$	A1		
	13			
	Play R_1 with probability $\frac{6}{13}$			
			_	
	and R_2 with probability $\frac{7}{13}$	E1√	7	FT their <i>p</i> (statement needed)
(ii)	30			48
(Value of game = $3 - \frac{30}{13}$			Or $\frac{48}{13} - 3$
	$=\frac{9}{13}$	B1	1	$=\frac{9}{13}$
	Total		13	

Q	Solution	Marks	Total	Comments
4 (a)	$x + z \le 9$	M1		One correct inequality or all using <
	$2x + y + 4z \le 40$ $4x + 2y + 3z \le 33$	A1	2	All correct
(b)(i)	Pivot is 1 in z-column	M1		May be implied by use
	P x y z s t u value 1 3 -3 0 5 0 0 45	A1		One row correct (other than pivot)
	0 1 0 1 1 0 0 9 0 -2 1 0 -4 1 0 4	A1		Another row correct (other than pivot)
	0 1 2 0 -3 0 1 6	A1	4	All correct
(ii)	(Know optimal value not reached) since –3 in <u>top row</u>	E1	1	
(c)(i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1		Next pivot 2 in <i>y</i> -column and perhaps divide by 2
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1		One row correct (other than pivot)
	$0 \frac{1}{2} 1 0 -\frac{3}{2} 0 \frac{1}{2} 3$	A1		Another row correct
		A1	4	All correct
(ii)	Optimum value of <i>P</i> now reached	E1√		FT statement if their tableau has negative values in top row
	P = 54, $x = 0$, $y = 3$, $z = 9$	B1√		values in top row
	s = 0, t = 1, u = 0	B1	3	All correct and final tableau correct
	Total		14	

Q O	·				Marks	Total	Comments
		~					
5(a)	Stage	State	From	Value			
	1	Н	T	5 *			
		I	T	6 *			
	2	F	Н	-2 + 5 = 3 *	B1		Stage 2 values correct
			T	4			
			I	-2 + 6 = 4			
		_	_				
		G	Ι	5 + 6 = 11 *			
	2		7.7	4 5 0	M1		Stage 3 (6 values)
	3	С	H	4+5=9			
			$\frac{F}{G}$	5 + 3 = 8 * 2 + 11 = 13			M0 for complete enumeration
			G	2+11-13			
		D	G	-1+11 = 10*			
		D	U	-1+11 - 10			
		Е	F	5 + 3 = 8 *	A 1		Comment
			G	3+11=14	A1		Correct
	4	A	С	2 + 8 = 10	M1		Stage 4 (4 values) and using minimum
			D	-1+10=9*	1,11		values from previous stage
		В	D	-2 + 10 = 8	A1		Stage 4 correct
			Е	-3 + 8 = 5 *			
	5	S	A	1 + 9 = 10 *			
			n	5 5 10 %	A1	6	Stana 5 comment CSO
			В	5 + 5 = 10 *	Aı	0	Stage 5 correct CSO
(b)	Minimun	2 20st 10			B1		
(0)	Routes S				В1 В1		First route correct
		ADGIT			B1	3	Second correct (no others)
		112011		Total	<i>D</i> 1	9	become correct (no others)
				10141		,	

)	Solution	Marks	Total	Comments
o(a)	Correct position of <i>S</i> and <i>T</i> Values on edges <i>SP</i> , <i>SQ</i> , <i>UT</i> , <i>VT</i> and <i>WT</i>	M1 A1	2	_U
	P 15 7 4	Y	5	5 V 19 T
ı	S	17	12 Z	14 W
b)(i)	Cut C has value 40	B1	1	15 + 0 + 17 + 8
(ii)	$Max flow \leq 40$	E1	1	
(c)	Route Flow SQZWT 8 SPYXZVT 4	B1 B1	2	
d)(i)	3 forward and backward flows correct All initial values correct on edges below	M1 A1	2	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 13	8 Z	V 15 T $6/8$ W

Q Q	Solution	Marks	Total	Comments
6(d)(ii)	Route Flow SQZWT 8			(Many different possibilities)
	SPYXZVT 4	M1		2 or more correct flows in table
	SPYUT 5 SPYVT 6	A1		Table correct (adding to 37)
	$\begin{array}{c cc} SPXZVT & 7 \\ \hline SQXZWT & 6 \\ \end{array}$	M1		At least 2 flows augmented on diagram
	SQXYVT 1	A1	4	Correct forward and backward final flows
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43 1360 117		85 720 12915 1718 1718 1718 1718 1814 1814 1814
				Other possibility for ZV, VT, ZW and WT
(e)	Flow from Y to X is 3	B1	1	
	Total		13	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MD02 Decision 2

Mark Scheme

2008 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX

Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

M	mark is for method							
m or dM	mark is dependent on one or more M marks and is for method							
A	mark is dependent on M or m marks and is for accuracy							
В	mark is independent of M or m marks and is	for method and	accuracy					
Е	mark is for explanation	mark is for explanation						
$\sqrt{\text{or ft or F}}$	follow through from previous							
	incorrect result	MC	mis-copy					
CAO	correct answer only	MR	mis-read					
CSO	correct solution only	RA	required accuracy					
AWFW	anything which falls within	FW	further work					
AWRT	anything which rounds to	ISW	ignore subsequent work					
ACF	any correct form	FIW	from incorrect work					
AG	answer given	BOD	given benefit of doubt					
SC	special case	WR	work replaced by candidate					
OE	or equivalent	FB	formulae book					
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme					
−x EE	deduct x marks for each error	G	graph					
NMS	no method shown	c	candidate					
PI	possibly implied	sf	significant figure(s)					
SCA	substantially correct approach	dp	decimal place(s)					

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD02

MD02 (cont)		G 1 · ·				m	T .
Q	Solution					Marks	Total	Comments
2(a)	Hungari	an algor	ithm mii	nimises		E1		
	20-x in	dicates	how mai	ny				
	points N	OT scor	red			E1	2	idea of high becoming low
(b)	3	4	1	3	0			
	0	7	5	4	2			
	4	3	5	2	2 7			
	7	6	2	5	3	B1		
	5	4	0	4	5			
	3	1	1	1	0	M1		column reduction, allow one slip
	0	4	5	2	2			from $20 - x$ table
	4	0	5	0	7			
	7	3	2	3	3 5			
	5	1	0	2	5			
	3	1	1	1	0	A1	3	then row reduction
	0	4	5	2	2			AG but previous table must be correct
	4	0	5	0	7			
	5	1	0	1	1			
	5	1	0	2	5			
(c)	Lines dr	awn				B1		4 0 5 0 7
	Reduce	all unco	vered by	1				
	and add					M1		
			•					
	3	0	1	0	0			
	0	3	5	1	2			
	5	0	6	0	8	A1	3	allow M1A1 if lines not as above
	5	0	0	0	1			
	5	0	0	1	5			
(d)	Choosin	g zeros i	in first a	nd last co	olumns			
	Alice –					B1		Allow if only circles around these entries
								with no matching listed
	Possible	options						
	B-3;					B1		
	B-4;					B1		
	B-5;					B1	4	
		,						
(e)	Maximu	m score	= 92			B1	1	
					Total		13	

MD02 (cont Q	Solution	Marks	Total	Comments
3(a)(i)	Roseanne plays R_1 with prob p			
	Expected value when Collette plays			
	$C_1 : -3p + 2(1-p) = 2-5p$			0
	$C_2: 2p - (1-p) = 3p - 1$	M1		One correct unsimplified
	$C_3: 3p-4(1-p)=7p-4$	A1		All correct unsimplified
	- 3			
	2			
	0	M1		drawing 'their' lines (2 'correct' ft)
	-1 Feasible	A1		correct with values clear at $p = 0$ and
	region	AI		p = 1
	-4			
		2.61		
	Solving $2-5p = 7p - 4$ 6 = 12p	M1		their highest point SC B1 if $p = \frac{1}{2}$
	-			SC B1 if $p = \frac{1}{2}$ found from graph
	$\Rightarrow p = \frac{1}{2}$	A1		
	Strategy is to play R ₁ for 50% of time	E1√	7	
(;;)	(1)			
(ii)	Value = $2 - 5\left(\frac{1}{2}\right)$ or $7\left(\frac{1}{2}\right) - 4 = -\frac{1}{2}$	B1	1	AG CSO
	(2)			$p = \frac{1}{2}$ and both expressions correct
(b)(i)	Let Collette play C_1 with prob p			2
	and C_2 with prob q			
	\Rightarrow C ₃ with prob 1 – $p - q$	B1	1	
(ii)	$-3p+2q+3(1-p-q)=-\frac{1}{2}$			
	2	M1		Either equation LHS correct
	$-3p+2q+3(1-p-q) = -\frac{1}{2}$ $2p-q-4(1-p-q) = -\frac{1}{2}$			Condone $(1 - p + q)$ used
	$\Rightarrow 6p + q = 3\frac{1}{2}$			
	2	A1		Either equation
	$6p + 3q = 3\frac{1}{2}$			correct and simplified $p \& q$ coefficients
	$\Rightarrow p = \frac{7}{12}$	A1		CSO
	q = 0			
	\Rightarrow Collette plays C_1 with prob $\frac{7}{12}$,			
	(never plays C_2),			
	and plays C_3 with prob $\frac{5}{12}$	E1	4	Must have statement with $C_1 \& C_3$
	12			correct only
	Total		13	

Q	Solution	Marks	Total	Comments
4(a)(i)	4 is chosen as pivot	B1		
	$\frac{20}{4} = 5 < \frac{14}{2} = 7$ and $5 < \frac{8}{1} = 8$	E1	2	Must have 3 values possibly unsimplified plus comment about smallest (positive) quotient
(ii)	P x y z s t u v value			
(b)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 B1 B1 B1	4	may be left as { 0 0 4 0 0 3 0 1 20 } or multiples of these rows SC MI for row operations if wrong pivot used SC B1+B1 max ft if pivot row incorrect after ÷ 4 Must have attempted row operations
(c)	Maximum $P = 97$	B1√		
	x = 56, y = 5, z = 3	B1√	2	
(d)	s = 0, $t = 0$, $v = 0$, $u = 4\Rightarrow only 1 of original inequalities has some slack$	B1√ E1√	2	Ft if >1 non-zero slack variables
	Total		11	

Q Q	Solution	Marks	Total	Comments
5(a)	Overhead cost = £300	M1		considering overhead and storage of 2
	Storing 2 cabinets = $2 \times £50$			cabinets
	$\Rightarrow \text{Total cost} = £400$	A1	2	
(b)				Month State Value
				Apr 0 $300 + 0 = 300$ A_3
				1 300 + 50 = 350 Mar 1 300 + 50 + 300
	March values £700	B1		Mar $\begin{vmatrix} 1 & 300 + 50 + 300 \\ = 650 & A_2 \end{vmatrix}$
	£750	B1		2 300 + 100 +
	Choosing minima for March (at least one), their 650 or 700 seen in February values	M1		300 = 700 Min
	then 650 of 700 seen in February values	1411		300 + 100 +
				350 = 750
	February state 0 $300+0+650=950$	D1		Feb $\begin{vmatrix} 0 & 300 + 0 + 650 \\ = 950 & A. \end{vmatrix}$
	300+0+650=950	B1		$\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$
	February state 1			$\begin{vmatrix} 1 & 300 + 30 + 630 \\ = 1000 & Min \end{vmatrix}$
	300+50+650=1000			300 + 50 + 700
	300+50+700 =1050			= 1050
	February state 2	A1		2 300 + 100 + 650 = 1050
	300+100+650=1050			300 + 100 +
	300+100+700=1100			700 = 1100
	January values	B1		Jan 0 300 + 0 + 950
	1250 and 1300			
				= 1300
	Choosing least value of January and			
	working backwards through table to select			
	actions A_1 , A_2 and A_3	M1		
	Schedule correct	A1	8	SC: B1 for schedule without DP
				Jan Feb Mar Apr
				3 4 4 2
				Should get 3 or 4 when table completed
(c)	Profit excluding answer to (b)			
(c)	$13 \times £(2000 - 300)$	M1		Generous
	- 4×£2000	1411		Scholous
	=£14100	A1		
	Total profit over 4 months is			
	£14100-£1250		-	
	=£12850	A1√	3	Ft their £1250
	Total		13	

(c)(i) $\frac{17-9+16+20=44}{\text{Max flow}} = \frac{44}{4}$ $\frac{1}{81}$ $\frac{1}{10}$ 1	MIDUZ (cont)		1 1		~
(c)(i) Max flow ≤ 44 B1 T T B1 T T B1 T T B1 T T T T T T T T T	Q	Solution	Marks	Total	Comments
(c)(i) Max flow ≤ 44 B1 T T T T T T T T T	6(a)(i)			1	
(c)(i) Initial forward and backward flows M1		Max flow ≤ 44	B1√	1	
(c)(i) Initial forward and backward flows M1					7
(c)(i) Initial forward and backward flows M1	(6)		B1		
(c)(i) Initial forward and backward flows M1 2 5 pairs correct M1 2 5 pairs correct				2	
(c)(i) Initial forward and backward flows M1			DI	3	17
(c)(i) Initial forward and backward flows M1			12		
(c)(i) Initial forward and backward flows M1		P	13		- 11
(e)(i) Initial forward and backward flows M1		^	\rightarrow		
(c)(i) Initial forward and backward flows R M1 Al SPUT SRWT 1 Al SSRWT Al					
(e)(i) Initial forward and backward flows M1		20 /	\	/	
(c)(i) Initial forward and backward flows M1		20/	(10)	1/	
(c)(i) Initial forward and backward flows Correct M1		/ 4		P	14 17
(c)(i) Initial forward and backward flows Correct M1			/		
(c)(i) Initial forward and backward flows Correct M1		S / S		14	
(c)(i) Initial forward and backward flows M1		2			3
(c)(i) Initial forward and backward flows M1					
(c)(i) Initial forward and backward flows M1		-			\ /
(c)(i) Initial forward and backward flows M1		\'.			
(c)(i) Initial forward and backward flows Correct M1		A V	8		3 1 7 10
(c)(i) Initial forward and backward flows M1			O.		\ /
(c)(i) Initial forward and backward flows M1				15	
(c)(i) Initial forward and backward flows M1				->	W
(c)(i) Initial forward and backward flows Correct M1 A1 2 5 pairs correct A1 2 5 pairs correct					.,
Correct A1 2 P					
(ii) $\begin{array}{c ccccc} \mathbf{Path} & \mathbf{Additional Flow} \\ \hline SPUT & 3 \\ SQVT & 2 \\ SRWT & 1 \\ SRWVT & 1 \\ \hline \end{array}$ M1 adjusting flows on network (1 path sho correctly) correct additional flow in table second flow	(c)(i)		M1		5 pairs correct
(ii) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Correct	Al	2	
(ii) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
(ii) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$				4	
(ii) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		P	-		U
(ii) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	← x	4	
(ii) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2/1/		' /	
(ii) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$		/// *//	ì	,/	1 1 2
(ii) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$		///	/	/1	1/4 /
(ii) Path Additional Flow R		/47	1	/	0 10
(ii) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		/ 5 /1	/'	0	1.0 25
(ii) Path Additional Flow SPUT 3 SQVT 2 A1 SRWT 1 M1 A1 SRWVT 1 A1 Second flow			/	->	V/+3
(ii) Path Additional Flow SPUT 3 SQVT 2 A1 SRWT 1 M1 A1 SRWVT 1 A1 SRWVT 1 A1 Second flow		5			T
(ii) Path Additional Flow SPUT 3 SQVT 2 A1 SRWT 1 M1 A1 SRWVT 1 A1 SRWVT 1 A1 Second flow		3		- X,	184+ 10/
(ii) Path Additional Flow SPUT 3 A1 SQVT 2 A1 SRWT 1 M1 A1 SRWVT 1 A1 Second flow		0.1		3	1 1 1 1
(ii) Path Additional Flow SPUT 3 A1 SQVT 2 A1 SRWT 1 M1 A1 SRWVT 1 A1 Second flow		1 36	n.		1
(ii) Path Additional Flow SPUT 3 A1 SQVT 2 A1 SRWT 1 M1 A1 SRWVT 1 A1 Second flow		4	Ú.		18/123
(ii) $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1, 3			
(ii) $ \begin{array}{ c c c c c c c }\hline \textbf{Path} & \textbf{Additional Flow} \\\hline SPUT & 3 \\\hline SQVT & 2 \\\hline SRWT & 1 \\\hline SRWVT & 1 \\\hline \end{array} \begin{array}{ c c c c c c c c }\hline M1 & adjusting flows on network (1 path sho correctly) \\\hline correct \\\hline M1 & additional flow in table \\\hline second flow \\\hline \end{array}$		3			
(ii) Path Additional Flow SPUT 3 A1 correctly SRWT 1 M1 additional flow in table second flow				-	χ_{χ} W
(ii) Path Additional Flow SPUT 3 SQVT 2 SRWT 1 SRWVT 1 SRWVT 1 A1 adjusting flows on network (1 path sho correctly) correct M1 additional flow in table second flow		R			~ 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(ii)	Path Additional Flow	M1		adjusting flows on network (1 path shown
SQVT2A1correctSRWT1M1additional flow in tableSRWVT1A1second flow	(/				correctly)
SRWT1M1additional flow in tableSRWVT1A1second flow			A1		
SRWVT 1 A1 second flow					
A1 5 all correct		SKWVI 1		5	
			AI	5	un concet
			<u> </u>		<u> </u>

General Certificate of Education

Mathematics 6360

MD02 Decision 2

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX

Key to mark scheme and abbreviations used in marking

M	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
A	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is for method and accuracy						
E	mark is for explanation						
√or ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
-x EE	deduct x marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD02

Q	Solution			Marks	Total	Comments		
1(a)	Reducin	g colum		<u>-</u>				
-(w)		5 0 10111						
	7	9	7	4	5			
	9	7	6	5	3	M1		Reducing columns (allow up to 2 slips)
	3	5	4	1	0			
	3	2	3	0	1			
	0	0	0	1	1	A1		All correct
		Ü	Ü	-	-			
	Reducing	g rows:						
	3	5	3	0	1			
	6	4	3	2	0			
	3	5	4	1	0			
	3	2	3	0	1			
	0	0	0	1	1	A1	3	AG
(b)	X X X X	x x x x						
		I	l					
	Covering	g with 3	lines as	above		B1		
	Subtracti adding 2				atries and	M1		Condone one slip
	1 4 1	3 2 3 —0	1 1 2	0 2 1	1 0 0			
	_0	0	0	3	3	A1		Correct table
	Can be councovered	ed entrie	es by 1 ar	-	reduce ase double	m1		Condone one further slip
	0 3 0 1	2 1 2 0	0 0 1 1	0 2 1 1	1 0 0 2			
	0	0	0	4	4	A1	5	CSO
(c)			FF.2			M1		T
	P3, Q4, 1					A1		First correct match 1S, 2T, 3P, 4Q, 5R
	P5, Q4, 1	R2, S1,	Т3			A1	3	Second match 1S, 2R, 3T, 4Q, 5P
(4)	Minimu	n tima :	a 12 + 14	2 12	17 15			
(d)	Minimui = 70	n ume 1	18 13 + 1.	5 + 12 +	1/+13	B1	1	Or $10 + 13 + 18 + 17 + 12 = 70$
	- 70				Total	DI	12	O1 10 + 13 + 10 + 17 + 12 - 70
					Total	l	14	

MD02 (cont) **Solution** Marks **Total Comments** O 2(a) C 3 2 9 9 5 14 A 0 3 5 14 6 20 D G 5 4 9 20 2 22 9 2 14 B 0 5 5 H Duration 5 7 12 12 8 20 Earliest start time Latest finish time (i) Earliest start times M1 Condone one slip with FT 2 All correct **A**1 (ii) Latest finish times M1Condone one slip with FT 2 All correct **A**1 **(b)** Critical paths BEHJ **B**1 **BDFIJ** В1 And no others Minimum completion time 22 days **B**1 3 Withhold first B1 mark if activities not BEHJ or BDFIJ correctly fitted **B**1 (c)(i) clearly indicated Second of critical paths **B**1 A and C shown correctly **B**1 В1 4 F and G shown correctly no gaps in blocks etc 6 5 C F Number of workers 4 D F 3 2 B E H 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (days) (ii) Problem with C - now starts day 5 E1 Or C starts day 12 E delayed until day 7 E delayed until day 7 F cannot start until day 14 E1and F starts day 14 (H, I and J delayed)Extra time required 5 days **B**1 3

14

Total

MD02 (con		I		
Q	Solution	Marks	Total	Comments
3(a)	P x y z r s Value			
	1 -4 5 -6 0 0 0	В1		B0 if no slack variables used
	0 6 7 -4 1 0 30	В1		
	0 2 4 -5 0 1 8	B1	3	
(b)(i)	Both negative when each value is divided by the entry in <i>z</i> -column	E1	1	
(ii)	Pivot from <i>x</i> -column since value in top row is negative			
	$\frac{30}{6} = 5, \frac{8}{2} = 4 \text{ and } 4 < 5$	E1		Both calculations and comparison needed
	Choose 2 as pivot	B1	2	
(iii)	1 0 13 -16 0 2 16	M1		Row operations keeping pivot row fixed
	0 0 -5 11 1 -3 6	A1		or divided by 2 First or second row correct
	$0 1 2 -2\frac{1}{2} 0 \frac{1}{2} 4$	A1	3	All correct (final row may be 0 2 4 -5 0 1 8)
(iv)	x = 4	B1		
(= 1)	y=0, $z=0$	B1	2	
(v)	As z increases, P increases without limit	E1	1	
(c)(i)	New initial tableau			
	Q x y z r s Value			
	$1 \frac{-}{4} 5 \bigodot{0} 0 0 0$			
	0 6 7 -4 1 0 30			
	$\begin{bmatrix} 0 & 0 & 7 & -4 & 1 & 0 & 30 \\ 0 & 2 & 4 & -5 & 0 & 1 & 8 \end{bmatrix}$	B1√		
	Revised tableau after one iteration			
	1 0 13 (10) 0 2 16	B1	2	Top row only changed to exactly this
	M 0 16	D.		
(ii)	$\operatorname{Max} Q = 16$	B1	1	
	Total		15	

Q	Solution	Marks	Total	Comments
4 (a)	Row minima			
	_7			
	-1			
	-3			
	Column max 6 8 − 1			
	Max (row min) = -1	M1		Attempting Row Min & Col Max or Maxmin and Minmax
	Min (col max) = -1	A1		All values correct and shown with correct words
	Since these values are equal the game has a stable solution	E1		Must both be −1 and have statement
	Raj plays II, Cal plays Z	B1	4	
(b)(i)	$C_1:5p-2(1-p)$	B1		7p-2
	$C_1:5p-2(1-p)$ $C_2:xp+4(1-p)$	B1	2	
	$\Rightarrow 5p - 2(1-p) = \frac{8}{3}$	M1		Their expected gain $(C_1) = \frac{8}{3}$
	$\Rightarrow p = \frac{2}{3}$ $xp + 4(1-p) = \frac{8}{3}$	A1		
	$xp + 4(1-p) = \frac{8}{3}$	M1		Their C_2 gain = $\frac{8}{3}$ (must involve x)
	$\Rightarrow \frac{2}{3}x + \frac{4}{3} = \frac{8}{3}$			
	$\Rightarrow x = 2$	A1	4	
	Total	1	10	

Q			Solut			Marks	Total	Comments
5 (a)				is 12 tonnes		M1		Either 12 or 11 stated
	and on	QBEY i	s 11 tonn	es				
	QACY a	llows g	reater loa	d to be carried	1	A1	2	Both 12 and 11 seen plus statement
(b)	Stage	State	Action	Calculation	Value			
	1	С	CY	-	12			
		D	DY	-	15			
		E	EY	-	16	B1		Stage 1 values (12), 15 and 16
	2	A	AC	Min(14,12)	12*			
			AD AE	Min(11.15) Min(10,16)	11 10	M1 A1		Stage 2: at least 3 min values correct At least 5 values correct
		В	BC BD BE	Min(12,12) Min(13,15) Min(11,16)	12 13* 11	A1		All calculations showing minima and values correct
	3	Q	QA QB	Min(13,12) Min(14,13)	12 13*	m1		Stage 3: "12" and "13" brought forward from Stage 2
						A1		All calculations and values correct
	Maximi		~			B1		
	Maximu	ım poss	ible load	= 13 tonnes		B1	8	
					Total		10	

D02 (con	t)			
Q	Solution	Marks	Total	Comments
6(a)	Arrival gates are U and R	B1	1	
(b)	Cut value = 45 + 53 + 20 + 37 + 0 = 155	B1	1	
(c)	Max flow along <i>UTSP</i> is 17 and along <i>RQVP</i> is 31	B1 B1	2	
(d)(i)		1		1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Route Value of Flow UTSP 17 RQVP 31 RSP 18 RQP 11 UTP 28 UVP 22 UVQP 9
	Initial flows along <i>UTSP</i> and <i>RQVP</i> with potential increases and decreases	B1		
	Table: first route and correct flow Another route and flow Table correct	M1 A1 A1		After UTSP and RQVP
	Network: attempt to use labelling procedure with forward/backward flows All diagram correct	M1 A1	6	
	7 in diagram correct	711	O	
(ii)	Maximum flow = 136 Figure 5 correct: Q Q Q Q Q Q Q Q	B1 B1	2	Other possible answers
(e)	Rate reduced by 3 New maximum is 133 Total	M1 A1	2 14	"their" maximum flow – 3
	TOTAL		75	

TOTAL

General Certificate of Education

Mathematics 6360

MD02 Decision 2

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
A	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is for method and accuracy						
Е	mark is for explanation						
$\sqrt{\text{or ft or F}}$	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
−x EE	deduct x marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD02

Q	Solution	Marks	Total	Comments
1	$ \begin{array}{c c} A \\ \hline 0 5 7 \end{array} $ $ \begin{array}{c c} B \\ \hline 0 3 3 \end{array} $ $ \begin{array}{c c} E \\ \hline 3 1 4 \end{array} $ Earliest Latest start time finish time Duration	F 9 2 13 G 4 9 13	13	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(a)	Network attempted (3 more activities) Up to 2 slips (boxes or connections) Correct network	M1 A1 A1	3	SCA Condone missing arrows if sequence is clear
(b)(i)	Forward pass Correct	M1 A1	2	up to 1 slip ft
(ii)	Backward pass Correct	M1 A1	2	up to 1 slip ft
(c)	Minimum completion time 22 days	B1		Must be stated – not simply in <i>K</i> box
	Critical path B E G H I K	B1	2	and no others
(d)(i)	New start time for <i>H</i> is 15 days	M1		For H , their (F earliest time 9) + (2 + 4)
(u)(1)	New start time for <i>I</i> is 16 days	A1	2	both correct

Q (con	Solution	Marks	Total	Comments
2(a)	(For each outcome)			
	Rowena's gain + Colin's gain = 0	E1	1	One player's loss is other's gain
(b)	(Column maxima 2, 5, 4)			Withhold E mark if any value
(2)	$\Rightarrow \min(\text{col max}) = 2 \qquad \text{(OE but strict)}$	E1		incorrect; accept column minimax = 2
	\Rightarrow Colin's play-safe strategy is C_1	B1	2	
		21	_	
(c)	R_3 is dominated by R_1	E1	1	-5 < -4; 4 < 5 and 3 < 4
	3			E0 if R_2 mentioned as well
(d)	Let Describe Descriptional			Lo II N ₂ mentioned as wen
(u)	Let Rowena play R_1 with prob p			
	and R_2 with prob $1-p$			
	Expected gain when Colin plays			
	C_1 : $-4p + 2(1-p) = 2-6p$			
	$C_2:5p-3(1-p)=-3+8p$	M1		attempt at least 2 with one correct
	$C_3:4p-(1-p)=-1+5p$	A1		all 3 correct unsimplified
	3			
	Plot expected gains against p for $0 \le p \le 1$	M1		All 3 drawn ft their exp gains
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1		correct
	$\Rightarrow 2 - 6p = -3 + 8p$	M1		Using "correct" equation Choosing highest point of region
	$\Rightarrow p = \frac{5}{14}$	A1		
	Therefore Rowena plays R_1 with prob $\frac{5}{14}$ and R_2 with prob $\frac{9}{14}$	E1√	7	ft their p
	14			
	Total		11	

MIDU2 (cont	,	I		~
Q	Solution	Marks	Total	Comments
3(a)	Hungarian algorithm minimises. 17-x gives measure of criteria not met (which need minimising in order to	E1		Or changes maximising to minimising problem
	maximise scores)	E1	2	Explanation of what each new entry or 17- <i>x</i> represents (as something which can be minimised)
(b)	4 4 8 7 4 4 3 5 0 2 1 7 9 3 3 6 3 5 1 7 5 3 3 4 2	B1		array with $17-x$ values
	0 0 4 3 0 0 0 3 3 0 4 3 5 0 2 4 3 4 0 2	M1		reduce rows first – condone one slip
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	3	then columns; AG
(c)	Top and bottom rows and 1 st & 4 th columns covered	B1		Zeros covered with 2 horizontal and 2 vertical lines
	2 0 3 5 0 4 1 2 0 0 0 4 5 2 0 5 0 1 0 4	M1		augment by subtracting 2 from each uncovered and adding 2 to each double covered – condone one slip (may earn if 4 different lines are drawn)
	5 1 0 4 0	A1CSO	3	
(d)	T1, R2, V3, U4, S5 T1, U2, V3, S4, R5	M1 A1 M1 A1	4	3 items correctly matched First matching correct 3 items correct in second matching Second matching correct and no other
(a)	Maximum total score = 74	B1	1	matches attempted
(e)	Total	ומ	13	
	Total		13	

MD02 (cont	,			1 1 4				N. 1	/D / 1	C .		
Q				Solution	n			Marks	Total	Comments		
4 (a)	$ \begin{array}{c} x + 2y \\ 2x + y \end{array} $							B1	1	Exactly this		
(b)(i)		F	Pivot is	2 in <i>x</i> -	coluı	mn		B1		Must be ringed or clearly indicated or stated – not simply implied		
	P	x	у	z	S	t	value	M1		row operations (even with incorrect pivot) condone one slip		
	1	0	1	8-k	0	2	20	A1		Top or 2 nd row correct using correct pivot		
	0		2	1		_	2	A1	4	All correct (condone multiples of rows)		
	0	1	$\frac{1}{2}$	2	0	$\frac{1}{2}$	5					
(ii)	8- <i>k</i> <	0						M1		Their $f(k) < 0$		
	$\Rightarrow k$	>8						A1	2	SC B1 for $k \ge 9$		
(c)(i)	New	pivot	from	z-colun	nn in	secon	d row	B1√		Stated or possibly implied from tableau		
	P	x	у	z	S	t	value	M1		row operations using "their" correct		
	1	0	4	0	2	1	24			pivot condone 1 slip		
	0	0	$1\frac{1}{2}$	1	1	$-\frac{1}{2}$	2	A1 A1	4	one row (other than pivotal row) correct all correct (condone multiples of rows)		
	0	1	$-2\frac{1}{2}$	0	-2	$1\frac{1}{2}$	1					
(ii)	P=24	1						B1√		Provided no negatives in top row		
	Optim	um n	ow rea	ached				E1		Or $P_{\text{max}} = \dots$		
	x = 1,	y = 0	0, z =	2				B1√		Only ft if no more than 2 slips in final tableau		
									3			
							Total		14			

Q Q	Solution	Marks	Total	Comments					
5(a)	Completing stage 2 values	B1							
	(condone unsimplified)								
	At least 6 values at stage 3	M1		Stage	State	From	Value		
	using only "their" max I value from stage	m1					_		
	2 All stage 3 values correct	A1			K	T	7		
	7111 stage 3 values correct	711			L	T	8		
	Using only max at D, E, F, G from stage	M1							
	3 in stage 4 (at least 3 of these values used)			2	Н	K	-2 + 7 = 5		
	All stage 4 values correct	A1			I	K	4 + 7 = 11	*	
	-		_			L	-1 + 8 = 7		
	All stage 5 values correct and all other values correct unsimplified	A1CSO	7		J	L	5 + 8 = 13		
	values correct unsimplified				J		$3+\delta=13$		
				3	D	Н	4 + 5 = 9		
						I	2+11=13	*	
					E	Н	7 + 5 = 12	*	
						I	-9+11=2		
					F	7	4.11 7		
					F	I J	-4+11 = 7 9+13 = 22	*	
							7.10 22		
					G	I	-7+11=4	*	
						J	-8+13=5	*	
				4	A	D	-2+13=11		
						E	5+12 = 17	*	
						F	-8+22=14		
					В	E	-1+12=11		
						F	-7+22=15	*	
						G	-3 + 5 = 2		
					C	G	5 + 5 = 10		
				5	S	A	1+17 = 18	*	
						В С	2+15 = 17 6+10 = 16		
				L		C	0110-10		
(b)	Maximum profit £18m	B1		condone	18				
()	Sequence of actions SAEHKT	B1	2						
	Total		9						

MD02 (cont))			
Q	Solution	Marks	Total	Comments
6(a)	Value of cut = $30 - 10 + 12 + 20$	M1		
	= 52	A1	2	Full marks for correct answers without working
(b)	AE = 9; EF = 5; FG = 4	B1 B1 B1	3	
(c)(i)	Attempt at forward and backward flows SA 2 & 4; AB 1 & 3; BT 1 & 3	M1		At least 5 pairs correct
	SD 3 & 1; DA 0 & 3; AE 0 & 3 BE 0 & 7; DE 2 & 0; ET 1 & 3 FD 2 & 1; EF 5 & 1; EG 1 & 5	A1		10 pairs correct
	FG 1 & 2; GT 3 & 0	A1	3	all correct
(ii)	First flow augmenting path and correct flow on table Table correct Adjusting flows – forward and back Correct	M1 A1 M1 A1	4	May end up with $S \xrightarrow{\frac{1}{5}} A$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} B \\ 7 \\ 3 \\ 34 \\ 6 \end{array} $	x ₀	Path Extra flow SABT 1 SADET 1 Or SDET SDFGT 1 SDEGT 1
(d)	Max flow of 44 shown on figure 5	M1 A1 B	2	up to 2 slips all correct May have
(e)	Cut through their saturated arcs Cut passes through AB, AE, DE and DF	M1 A1	2	Or BT, ET, EG, and FG
	Total		16	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MD02 Decision 2

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX

Key to mark scheme and abbreviations used in marking

M	mark is for method							
m or dM	mark is dependent on one or more M marks and is for method							
A	mark is dependent on M or m marks and is for accuracy							
В	mark is independent of M or m marks and is for method and accuracy							
Е	mark is for explanation							
√or ft or F	follow through from previous							
	incorrect result	MC	mis-copy					
CAO	correct answer only	MR	mis-read					
CSO	correct solution only	RA	required accuracy					
AWFW	anything which falls within	FW	further work					
AWRT	anything which rounds to	ISW	ignore subsequent work					
ACF	any correct form	FIW	from incorrect work					
AG	answer given	BOD	given benefit of doubt					
SC	special case	WR	work replaced by candidate					
OE	or equivalent	FB	formulae book					
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme					
–x EE	deduct x marks for each error	G	graph					
NMS	no method shown	С	candidate					
PI	possibly implied	sf	significant figure(s)					
SCA	substantially correct approach	dp	decimal place(s)					

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD02

2(a) 8 7 9 10 8 9 x 8 7 11 11 12 10 9 9 10 11 11 12 12 12 12 12	Q	Solution	Marks	Total	Comments
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2(a)	9 x 8 7 11 12 10 9 9 10 11 9 8 11 11	B1	1	Adding extra row equal values
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(b)(i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1√		Reducing columns first
Care of drawn Care of draw		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1√		Reducing rows
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			E1		
$\Rightarrow \qquad \qquad \text{covered and subtracting 1 from uncovered} \\ \Rightarrow \qquad \qquad$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0 0 1 3 0 1 x-7 0 0 3 3 2 0 1 1 3 2 0 4 3 0 1 0 1 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			M1		
(iii) Total time 32 (minutes) (c) V3, T4, R1		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(iii) Total time 32 (minutes) B1 1 (c) V3, T4, R1 B1 First matching or V3, T4, Z1 B1 2 Second matching and no other	(ii)	S1, V2, Z3, T4			final tableau
(c) V3, T4, R1 B1 First matching or V3, T4, Z1 B1 2 Second matching and no other			A1	2	(Ron not assigned)
or V3, T4, Z1 B1 2 Second matching and no other	(iii)	Total time 32 (minutes)	B1	1	
	(c)			2 11	

MD02 (cont)	Solution	Marks	Total	Comments
3(a)	Row min			0.0000000000000000000000000000000000000
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1		Row minima and column maxima (all values)
		Б1		Column maxima (an varaes)
	Max (row min) = -2 $Min (col max) = -2$	M1		Both attempted or stated/indicated
	Since these are equal, there is a stable solution	A1		Must have both values = -2 plus statement (withhold if max (min) and min (max) not stated)
	Ann plays A_1 and Bill plays B_3 for playsafe	E1	4	
(b)(i)	Let Russ play R_1 with probability p			And R_2 with probability $1-p$
	C_1 : expected gain $-4p + 2(1-p)$			(2-6p)
	$C_2:7p-(1-p)=8p-1$	M1		2 correct unsimplified
	$C_3: 3p + (1-p) = 1-4p$	A1		All correct
	2 1 1 1 1 1 1 1 1 1	M1 A1		Plotting 3 expected gains for $0 \le p \le 1$ Correct gains plotted accurately
	Solving $8p - 1 = 1 - 4p$	M1		Choosing highest point of their region or correct
	$\Rightarrow p = \frac{1}{6}$	A1		
	\Rightarrow Russ plays R ₁ with probability $\frac{1}{6}$			
	and R_2 with prob $\frac{5}{6}$	E1	7	
(ii)	Value of game $=\frac{8}{6}-1$			Or $1 - \frac{4}{6}$
	$=\frac{1}{3}$	B1	1	
	Total		12	

MD02 (cont)	Solution	Monles	Total	Comments
Q 4(a)(i)	Slack (variables)	Marks	1 Otal	Comments
4(a)(1)	Stack (variables)	E1	1	Must be correct word
(ii)	2x + 2y + z + s = 14	B1	1	Exactly this
(b)(i)	Pivot from <i>y</i> -column = 1	B1		Identified or seen used by keeping 3 rd row fixed
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1		Row operations, even with wrong pivot
	1 -6 0 5 0 4 0 24 0 4 0 -3 1 -2 0 2 0 -1 1 2 0 1 0 6 0 8 0 -5 0 -4 1 5	A1		1st, 2nd or 4th row correct
		A1	4	All correct
(ii)	Still negative value in top row	E1	1	(only award if this is true for their tableau)
(c)(i)	Choosing 4 as pivot in <i>x</i> -column	M1		And perhaps dividing by 4 (using their pivot)
	1 0 0 $\frac{1}{2}$ $\frac{3}{2}$ 1 0 27	A1		1st, 3rd or 4th row correct ft one slip
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1		1st, 3rd or 4th row (another correct) ft one slip
	0 0 0 1 -2 0 1 1	A1	4	All correct (condone multiples of rows)
(ii)	Optimum now reached (since no negatives in top row)	E1		Or maximum value of <i>P</i> indicated (must have no negatives in top row)
	P = 27	B1√		ft their tableau P
	$x = \frac{1}{2}, \ y = 6\frac{1}{2}, \ z = 0$	B1	3	CAO; final tableau "correct" one slip
	Total	D.1	14	1.6. 1
5	July values	B1		3 correct unsimplified
		B1		Another 3 correct
	Use of one July min in June calculation	B1 M1		All correct
	Ose of one July min in Julie calculation	A1		4 correct values in June
		A1		All June values correct (ft one slip)
		711		7111 June various correct (it one slip)
	Use of two June min values	M1		
	in May calculation	A1		All May correct (ft one slip)
				Equivalent scheme for Network Method
	Their least May value			working backwards from August
	⇒ Project for May	M1		
	May June July August	A1	10	Schedule correct
	C A hol B	7.1.1	10	Schedule contect
				SC B1 if schedule correct with no dynamic programming

	S	olution	Marks Tota	al	Comments
nt)					
	Stage (Month)	State (Projects already done)	Action (Project to do)	Calculation	Cost in thousands of pounds
	August	A, B, C	0		0 (given)
		A, B	C		14 (given)
		<i>A</i> , <i>C</i>	В		10 (given)
		В, С	A		16 (given)
	July	A, B	0	0 + 14	14 (given) ←
	July	71, D	C	15 + 0	15 (given) (=
-		A, C	0	0+10	10 ←
		71, 0	B	12 + 0	12
		В, С	0	0 + 16	16 ←
		2, 0	A	18 + 0	18
		A	В	12 + 14	26(given)
			C	15 + 10	25 ←
		В	A	18 + 14	32
			C	15 + 16	31 ←
		C	A	18 + 10	28 ←
			В	12 + 16	28 ←
	June	A	0	0 + 25	25 ←
			В	13 + 14	27
			C	17 + 10	27
		В	0	0 + 31	31
			A	16 + 14	30 ←
			C	17 + 16	33
		С	0	0 + 28	28
			A	16 + 10	26 ←
			В	13 + 16	29
		0	A	16 + 25	41 ←
			В С	13 + 31	44
			C	17 + 28	45
	May	0	0	0 + 41	41
			A	17 + 25	42
			В	14 + 30	44
			C	14 + 26	40 ←
	Schedule	7			
		May	June	July	August
	Project	C	A	holiday	В
			, , 1		
		To	otal 10		

MD02 (cont)				,
Q	Solution	Marks	Total	Comments
6(a)(i)	Value of cut = $38 + 25 + 0 + 0 + 34$			Must show correct addition
	= 97	B1	1	AG
(ii)	${S,A}, {B,C,T}$ 65	B1		
	${S,B}, {A,C,T}$ 57	B1		
	$\{S,B,C\}, \{A,T\}$ 72	B1		
	$\{S,A,B,C\},\ \{T\}$ 56	B1	4	
	$\{B, B, C\}, \{I\}$	Di	4	
(iii)	Maximum flow = 53	B1√		ft their least cut value
()	Minimum cut = Max flow	E1	2	
(iv)	Their max flow on SA, SB or AT, CT	M1		A 22 T
	All correct	A1	2	34
	AT 22; AC 12; BC 19; CT 31			0 12 /31
	AB = x; $AS = x + 34$; $SB = 19 - x0 \le x \le 4$			$S \bullet \longrightarrow B \longrightarrow C$
	05154			
(b)(i)	Initial flow on Figure 6	M1		$A = 0$ $\overline{22}$ A T
	Forward potential and backward flow			4 0 3//21
	Condone 2 slips, ft their Figure 5			34 01 6 12 C 016
				S = 19 B = 19 13 88
				0
				D
	One correct augmented path in table and correct flow	M1		Path Additional Flow
	correct now	A1		SBDT 6 SABDCT 3
	Table correct with total additional flow= 9			SABDCT 3
	Final network correct with evidence of	A1	4	, 1 A
	labelling procedure used			37 3113 01/34
				C 61/10
				25 B 4 55
(<u>**</u>)	Now mayimum flow 62	D 1		
(ii)	New maximum flow $= 62$	B1		
	Correct maximum flow on network	B1	2	A 22 ★ T
				37 34 34
	May have			19 6
				S 25 B 3
	38			9
	S			D
	24 B		4=	
	Total TOTAL		15 75	
	IUIAL		13	

General Certificate of Education June 2010

Mathematics

MD₀2

Decision 2

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method							
m or dM	mark is dependent on one or more M marks and is for method							
A	mark is dependent on M or m marks and is for accuracy							
В	mark is independent of M or m marks and is for method and accuracy							
Е	mark is for explanation							
√or ft or F	follow through from previous							
	incorrect result	MC	mis-copy					
CAO	correct answer only	MR	mis-read					
CSO	correct solution only	RA	required accuracy					
AWFW	anything which falls within	FW	further work					
AWRT	anything which rounds to	ISW	ignore subsequent work					
ACF	any correct form	FIW	from incorrect work					
AG	answer given	BOD	given benefit of doubt					
SC	special case	WR	work replaced by candidate					
OE	or equivalent	FB	formulae book					
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme					
−x EE	deduct x marks for each error	G	graph					
NMS	no method shown	c	candidate					
PI	possibly implied	sf	significant figure(s)					
SCA	substantially correct approach	dp	decimal place(s)					

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD02				
Q	Solution	Marks	Total	Comments
1(a)	B E H 8 6 14	J 6 2 19 K 4 5 19	19	L 2 21
	Earliest start times	M1 A1		one slip follow through all correct
	Latest finish times	M1		one slip follow through
(b)	Critical paths are AEHKL and BFHKL	A1 M1	4	all correct one correct
		A1		both correct and no extras
	Minimum completion time = 21 days	B1	3	
(c)	D J A E G B F H K L Days Days			$A(0 \to 4)$ $B(0 \to 3)$ $C(0 \to 2 \to 3)$ $D(4 \to 7 \to 9)$ $E(4 \to 8)$ $F(3 \to 8)$ $G(8 \to 16 \to 17)$ $H(8 \to 14)$ $I(8 \to 10 \to 14)$ $J(16 \to 18 \to 19)$ $K(14 \to 19)$ $L(19 \to 21)$
		B1		A, B, E, F, H, K, L
		M1		correct C, D, G, I, J (4 with correct start
		A1	3	and duration) All 5 correct with correct slack indicated
(d)(i)	K now starts day 17	В1		or "delayed" b 3
	L now starts day 22	B1	2	days if 14 in network or "delayed" b 3 days if 19 in network
(ii)	Overall delay 3 days	B1	1	and a second sec
	Total		13	

O CONT	,		Solut	ion		Marks	Total	Comments
			Solut	1011		Marks	Total	Comments
2(a)	2	4	0	_	_			
	2	4	0	5	5	3.71		1 1/11 11
	4	2	0	4	3	M1		rows reduced (allow one slip)
	5	0	1	9	2			
	1	1	0	7	4			
	0	2	0	3	5			
	2 4	4	0	2	3			
		2	0	1	1	m1		columns reduced next
	5	0	1	6	0			Correct table
	1	1	0	4	2 3	A1	3	k = 6 stated or correct in table
	0	2	0	0	3		3	
<i>a</i> >	0.11				·	D.1		
(b)	3 lines	needec	to cove	r zeros s	hown	B1		middle column, middle and bottom rows
	D 1							
					nt by 1 and	3.54		
	ıncrea	se doub	le covere	ed by 1		M1		Condone one slip
	_	_			_			
	1	3	0	1	2			
	3	1	0	0	0			
	5	0	2	6(<i>k</i>)				
	0	0	0	3	1	A1	3	FT "their k". Condone k instead
	0	2	1	0	3			of 6
	4.2					3.51		
(c)	A3					M1		Or correct "rings" round elements for one
			~-					complete solution
	(A3)	<i>B</i> 4	<i>C</i> 5	D2	<i>E</i> 1	A1	_	first correct matching – must be stated
	(A3)	<i>B</i> 5	C2	D1	<i>E</i> 4	A1	3	second correct matching and no others
(d)	Minim	num tota	al penalty	y points :		B1	1	
					Total		10	

MD02 (cont	<i>)</i>			G .	4.			3.6 3	m	
Q				Solu	ıtion			Marks	Total	Comments
3(a)	P	х	у	z	S	t	valu	M		m 1 1 1 1 1 1
	1	6	5	2	0	0	$e \\ 0$	M1 A1		Two slack variables used correctly 1 row correct
	0	$\frac{-0}{1}$	_3 ?	–3 k	1	0	8	A1		all correct
	1 0 0	$\frac{1}{2}$	10	-3 <i>k</i> 1	0	1	8 17	711	3	an correct
										May earn in (b)(i)
(b)(i)	Pivot	in x-c	olum	n = 1				B1		May be implied by second row unchanged
	1	0	7	6k_3	6	0	48	M1		row operations (even with wrong
	0	1	2	6 <i>k</i> –3 <i>k</i> 1–2 <i>k</i>	1	0	8	A1		pivot)
	0	0	6	1-2k	-2	1	1	A1	4	1st or 3rd row correct
										all correct
(ii)	6k-3	3<0						M1		"their" $6k - 3 < 0$
				$\Rightarrow k$	$x < \frac{1}{2}$			A1	2	
(c)										
(6)	1	0	7	_9	6	0	48			
	0	1	2	-1	1	0	8			
	0	0	6	-9 -1 (3)	-2	1	1	M1		new pivot correct from their tableau and row operations attempted
								A1		2 rows correct (may be multiples of
	1	0	25		0		51	Ai		rows) usually pivot row & 1 other
	0	1	4	0	$\frac{1}{2}$	$\frac{1}{2}$	$8\frac{1}{2}$			
	0	0	2	1	$-\frac{2}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	A1	3	all correct (condone multiples of rows) Condone FT from one slip in (b)(i)
	Max I	P now	achie	eved				E1		Or "optimum", " $P_{\text{max}} = \dots$ "etc"
										Bur must have no negatives in top
										row
	P=5	1						B1√		FT their tableau
	r - Q	1 ,, _	0 7	$=\frac{1}{3}$ (a	allthr	ee)				correct values from almost
	$\lambda - \delta$	$\frac{1}{3}$, y –	. 0 , 2	$-\frac{1}{3}$ (a)	411 tlll			B1	3	'correct' tableau (condone one slip) condone 8.33 or better
							Total		15	
	I							1		

E	Let Roger play R_1 with probability p and R_2 with probability $1-p$ Expected gains: $C_1:7p-2(1-p)=9p-2$ $C_2:3p-(1-p)=4p-1$ $C_3:-5p+4(1-p)=4-9p$	M1 A1		one correct unsimplified
	Expected gains: $C_1: 7p - 2(1-p) = 9p - 2$ $C_2: 3p - (1-p) = 4p - 1$			one correct unsimplified
	$C_1: 7p - 2(1-p) = 9p - 2$ $C_2: 3p - (1-p) = 4p - 1$			one correct unsimplified
C	$C_2: 3p - (1-p) = 4p - 1$			one correct unsimplified
	2	A1		
	$C_3: -5p + 4(1-p) = 4-9p$	A1		
3	7			all correct unsimplified
		N/1		
	3	M1 A1		2 of their lines drawn correctly all correct and accurate for $0 \le p \le 1$
	, *p	7 1 1		Condone lines not quite to $p = 1$ if using
1	-12			"accurate" intersection points on p-axis i.e. $\frac{2}{9} < \frac{1}{4}$ and $\frac{4}{9} \approx twice \frac{2}{9}$
	C_2 and C_3 lines give optimum			
	4p - 1 = 4 - 9p	M1		ft their max point of region
	$p = \frac{5}{13}$	A1		Condone 0.385 or 0.3846(15) must be
	13	7 1 1		correct rounding if 3sf used
	Roger plays 5 8			
R	$R_1 \frac{5}{13}$ of time and $R_2 \frac{8}{13}$ of time	E1	7	CAO
(ii) V	Value of game = $4 \times \frac{5}{13} - 1 = \frac{7}{13}$	B1	1	$AG \text{or} \left(4 - 9 \times \frac{5}{13}\right) = \frac{7}{13}$
(b) L	Let Corrie play C_1 with prob p , C_2 with			must see correct calculation
l pi	prob q , C_3 with prob $1-p-q$			
	$R_1: 7p + 3q - 5(1 - p - q)$	M1		any correct expression
	$R_2 : -2p - q + 4(1 - p - q)$			r y
	$\Rightarrow 12p + 8q = 5\frac{7}{13}$	A1		either equation correctly with coefficients of p and q correctly simplified
	$6p + 5q = 3 \frac{6}{13}$			
	$\Rightarrow q = \frac{9}{13} \\ p = 0$	m1 A1CS		may reason that $p(C_1) = 0$ from part(a)E1 with M1, A1, A1, E1 from 2×2 equations
=	$\Rightarrow \begin{array}{c} 13 \\ -0 \end{array}$	0		
	p = 0			$3r - 5s = \frac{1}{13}$
				$3r - 5s = \frac{7}{13}$ $-r + 4s = \frac{7}{13}$
	⇒ Optimal mixed strategy is			15
	C_1 with prob 0			
	C_2 with prob $\frac{9}{13}$			Condone 0.692
	C_3 with prob $\frac{4}{13}$	E1	5	CAO & 0.308
	Total		13	

for final A mark

Q	Solution				Marks	Total		Comments
5(a)	PQSV has lor	ngest journey	12)					
	PQTV has lor	ngest iournev	13		B1		Both of these	
		igest journey	10)					
	Since 12 < 13,	POSV is bet	ter		E1	2	OE	
	,	<i>2</i>		ı	ı		1	
(b)								
	Stage	State	Action	Ca	lculation	Val		
	1	S	SV		-	11		
		T	TV		-	9		
		U	UV		-	12	2	
					(10.11)			
	2	Q	QS		x (12, 11)	12		2 values correct
			QT		ax (13, 9)	13		
			QU	M	ax (7, 12)	12	2 A1	All correct with pairs of
								correct values compared in
								calculation column
		R	RS	Ma	x (10, 11)	11	M1	2 values correct
		1	RT		$\frac{10, 11}{10, 11}$	14		2 variates correct
			RU		ax (8, 12)	12		All correct with pairs of
					(=,)			correct values compared to
								calculation column
	3	P	PQ	M	ax (9, 12)	12	2 A1	CSO; all table correct
			PR	Ma	x (11, 11)	11	l	With word "MAX" seen at
								least once (or 12 > 11 etc)
				ı	1		1	
	Using their mi	nimum at sta	ige 3		M1			oute starting <i>PR</i>
	3.60	C	ppar			0		Q if that is their least value)
	Minimax route	e from P to V	1s PRSV		A1	8		orrect minimax route when
			/TF	1 4 1		10	several value	s in table are incorrect
3 . T	4	. I T.T.		otal	· 1	10		land a sing C
								se values, pairs of correct
val	iues seen and co	msidered wit	n maximum	selecti	eu ior iirst	two A m	iarks, and wor	d 'Max' seen and all correct

MD02 (cont)		ı	1	
Q	Solution	Marks	Total	Comments
6(a)	Value of cut = $10 + 10 + 15 - 4 - 1$	M1		condone one slip if working shown
	= 30	A1	2	
(In)	DT 2 DE 2 ET 12	D.1		
(b)	BT 2, DE 3, ET 12	B1		any 2 correct
		B1	2	all correct
(c)(i)	Initial flows forward and back or double	M1		Condone pairs of values, (coordinates)
. , , ,	Arc with arrows(at least 6 pairs correct)			with single arrow
	1	A1	2	all correct (condone pairs with single
			_	arrow provided key indicated)
(ii)	Path Flow	M1		first correct path and flow
(11)	 	A1		another correct path and flow
		A1		all correct
	SCDET 1	AI		
	SACBT 1			(other possibilities also)
	(or SCBT instead of SACBT with flow 1		~	
	A		20.	B
			4	
			A 6	12.
	288			
	g 10		4	01//2
	X × X		1/20	1//0
	S•<	/	0	0
	21		x0.	D
		/	100	5
	<i>8</i> 7		86	x1\\2 x2
	Č		0	2/12/23
			15	
			3	E
	Must have forward and backward flows	M1		augmenting flows (6 pairs correct)
		A1	5	correct
(iii)				Alternative SA (3 & 9) SC (0&8)
` /	A		10	B
	15		/	5
			1	1
	¥5		4	
	S•<	/		T
			13	D
	13	/_	13	13
				4
	C		~	
			9	
				E
	May have			
	SA(14), SC(14)			
	and $AC(4)$ using			
	alternative	_		_
	Maximum flow values	M1		at least 8 correctly interpreted from their
				Figure 4 but 24 < their maxflow < 29
		A1	2	3
(1)	Cut through AD CD CD = 1 CE		-	Dark asset house total flame of 200 to 4.
(d)	Cut through AB, CB, CD and CE	B1		But must have total flow of 28 in their
	May use $\{S,A,C\} / \{B,D,E,T\}$			network (condone one slip)
		B1	1	

MD02 - AQA GCE Mark Scheme 2010 June series

Total	14	
TOTAL	75	

General Certificate of Education (A-level) January 2011

Mathematics

MD02

(Specification 6360)

Decision 2

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Convright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
−x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

002		T		
Q	Solution	Marks	Total	Comments
1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17 3	20	H 20 2 23 22 2 26 L 26 1 27 20 3 23 3 26 23 3 26 27 26 1 27 27 27 27 27 27 27
(a)	Forward pass	M1		up to one slip ft
	Correct	A1		
	Backward pass	M1		up to one slip ft
	Correct	A1	4	
(b)(i)	Critical path A C E G I K L	B1		
(::)	Float for $D = 13 - 2 - 7$	M1		'their 13' - 'their 2' - 7
(ii)	= 4 days	A1	3	their 13 – their 2 – /
	= + days	711	3	
(c)	A C E G I K L correct durations	M1		one slip in duration or height
	and heights \int	A1		correct
	D and B and F correct (no "holes")	B1		
	H and J correct (no "holes")	B1	4	withhold final mark earned if not clear
				which activities are taking place at any time
	10			time
	9 8			
	7	F		H = J
	Number 6 D D-of workers 5			
	4 3 4			J
		E		G I L
	0 1 2 3 4 5 6 7 8	9 10 11 12 13	14 15 16 17	7 18 19 20 21 22 23 24 25 26 27 28 29 30
	77.72	N	imber of day	ys
(d)	Correctly dealing with D, B and F	B1		ft 1 slip
, ,	Correctly dealing with H and J	B1		ft 1 slip
	Minimum extra time = 3 days	B1	3	CAO
	may be interchanged			
	8			May be
	Number 6 B D	F		interchanged
	of workers 5			other possibilities
	3 A C E		G	
	1 + + + + + + + + + + + + + + + + + + +	F	1	
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 1 Nu	4 15 16 17 18 mber of days	19 20 21 22	23 24 25 26 27 28 29 30
	m ()	T T	1 /	T
	Total		14	

		lark Sch	eme – Ge	eneral C	Certificate of	of Education	on (A-leve	el) Mathematics – Decision 2 – January 2011
MD02 (cont Q)		Solution			Marks	Total	Comments
$\frac{Q}{Q(a)(i)}$			Solution			Wates	Total	Comments
` , , , ,	4	8	12	2	6			
	0	5	12	4	8			
	11	10	8	3	8			
	2	9	3	5	1			
						D1	1	
	n	n	n	n	n	B1	1	
(ii)	Hungari 20 – x g	ows = no an algori ives mea eeds min	thm mini	imises	ot met	E1 E1 E1	3	square matrix by adding extra row (total score) points lost (in each entry)
(b)(i)	2 0 8	6 5 7 8	10 12 5 2	0 4 0	4 8 5	M1		reducing rows column reduction leaves matrix unchanged
						A1√	2	(p = 4, q = 5)
	V	0	0	V		A1√	2	(ft one slip)
(ii)	Zeros co	overed wi	ith 4 line	s <u>shown</u>	<u>1</u>	B1		row 5 and columns 1, 4 and 5
	2 0 8 ——————————————————————————————————	4 3 5	8 10 3 — 0	0 4 0 4	4 8 5 ————	M1		subtract 2 from all uncovered and add 2 to double covered (condone one slip)
		0	0	-		A1		(follow through their p and q)
						M1		augment (at least) one more time
	2	1	5	\bigcirc	1			(condone one slip)
	8 4 5	0 2 6 0	7 0 0	4 0 7 5	5 2 0 2	A1		may put line through second row and not first column $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
			_					be covered by 5 lines
	1D, 2A,	3C, 4E i	s matchi	ng		B1	6	(field B unused)
(iii)	(18 + 20)) + 12 + 1	19 =) 69			B1	1	
	l				Total	1	12	

13

Total

MD02	(cont)
	COME

MD02 (cont)	Solution	Marks	Total	Comments
3(a)(i)	Row minima $2, -3, x$	B1	1	Comments
(ii)	Column maxima 3, 6, 4	B1	1	Check for answers written on table
	Max (row min) = 2 Min (col max) = 3 Or $2 \neq 3$	M1		Condone Best (worst) =2 etc Worst (best) =3
	Since $2 \neq 3 \rightarrow$ no stable solution	A1cso	3	Both lines and statement must score previous B1, B1
(b)	$\begin{cases} x < 2, x + 3 < 6, 3 < 4 \\ \rightarrow R_1 \text{ dominates } R_3 \end{cases}$ Either of these	В1	1	hence Rhona should not play R ₃
(c)(i)	Let Rhona play R_1 with prob p and R_2 with prob $1 - p$			
	When C plays C_1 : exp value = 2 $p + 3(1 - p)$ C_2 : 6 $p - 3(1 - p)$			=3-p $=-3+9p$
	$C_3: 4p - (1-p) = -1 + 5p$	M1 A1		any two correct unsimplified all correct unsimplified
	3	M1		drawing two of their expected values for $0 \le p \le 1$ both vertical axes using same scale condone use of horizontal lines in paper
	-1 0 1 p	A1		all three correct lines must see numbers on at least one vertical axis
	3-p=-1+5p	M1		choosing highest point of region
	$\rightarrow p = \frac{2}{3}$	A1		
	\rightarrow Rhona plays R ₁ $\frac{2}{3}$ of time			
	and R_2 $\frac{1}{3}$ of time	E1√	7	ft their p
(ii)	Value of game = $3 - \frac{2}{3} = \frac{7}{3}$	B1	1	or $-1 + \frac{10}{3} = \frac{7}{3}$
	Total		13	

MD02 (cont				
Q	Solution	Marks	Total	Comments
4(a)(i)	$\frac{4}{-1} = -4$; $\frac{10}{2} = 5$; $\frac{21}{4} = 5\frac{1}{4}$ 5 is smallest positive ratio	E1		Must see 5 and $5\frac{1}{4}$ plus correct statement
	Pivot = 2	B1	2	
(ii)	1 0 $-\frac{1}{2}$ 5 0 $\frac{3}{2}$ 0 15	M1		row operations (even with wrong pivot)
	$0 0 \frac{3}{2} 3 1 \frac{1}{2} 0 9$	A1		1st, 2nd or last row correct
	$0 1 \frac{1}{2} 2 0 \frac{1}{2} 0 5$	A1		another of these correct
	0 0 0 -5 0 -2 1 1	A1		all correct (condone multiples of rows)
	Negative value in top row (→ optimum not reached)	E1	5	must have negative value in their top row
(b)(i)	New pivot is 'their $\frac{3}{2}$ ' in y-column PI	M1		or multiple of this
	1 0 0 6 $\frac{1}{3}$ $\frac{5}{3}$ 0 18	A1		1st, 3rd or 4th row correct
	$0 0 1 2 \frac{2}{3} \frac{1}{3} 0 6$	A1		another of these rows correct
	$0 1 0 1 -\frac{1}{3} \frac{1}{3} 0 2$			
	0 0 0 -5 0 -2 1 1	A1	4	all correct (condone multiples of rows)
(ii)	Optimum value of <i>P</i> reached	E1		must have no negative values in top row
	P = 18	B1√		ft their tableau
	x = 2, y = 6, z = 0	B1√		s = 0, $t = 0$, $u = 1(no more than 2 slips in final tableau for ft)$
	$4x + 2y + 3z \le 21$ still has slack	В1	4	Tableau must indicate <i>u</i> is only slack variable
	Total		15	

MD02 (cont	Solution	Marks	Total			Comm		
<u>Q</u>	Solution	Marks	Total	Comments				
5(a)				Stage	State	From	Value	
				1	I	T	- 7	
					J	T	-6	
					K	T	-5	
	Completing stage 2 values (condone			2	Е	I	-7 - 4 = -11	←
	correct unsimplified) (all 7 values)	B1			F	I	-7 - 3 = -10	←
						J	-6 - 2 = -8	
					G	I	-7 + 4 = -3	
						J	-6 + 7 = 1	
						K	-5 - 1 = -6	\leftarrow
					Н	K	-5 + 4 = -1	←
	At least 6 values calculated at stage 3	M1		3	A	E	-11 + 5 = -6	
	(M0 for 10 or more values)					G	-6 - 2 = -8	←
	Using only their minimum F or G value	m1			В	Е	-11 - 2 = -13	
	from stage 2					F	-10 - 4 = -14	←
	nom stage 2				С	F	-10 + 6 = -4	
						G	-6 - 3 = -9	←
	All 9 stage 3 values correct	A1				Н	-1 - 5 = -6	
	All 9 stage 3 values correct				D	G	-6 - 5 = -11	\leftarrow
	Haira maining (at 1 and 2) forms A. B. C. D.					Н	-1 - 3 = -4	
	Using minima (at least 3) from A, B, C, D	3.71		4	S	A	-8 + 23 = 15	
	stage 3 in stage 4	M1			~	В	-14 + 28 = 14	←
						С	-9 + 25 = 16	
	All correct in stage 4	A1	6			D	-11 + 25 = 14	←
(b)	Minimum cost of ticket (£)14	B1√		ft their	lowest s	stage 4 v	alue	
	Path SBFIT	B1		one cor	rect nati	h		
	SDTTT $SDGKT$	B1	3	one correct path 2nd correct path and no others				
		DI	9	∠nu coi	icci pat	ii anu ne	ouicis	
	Total		y					

D02 (cont				<u></u>
Q	Solution	Marks	Total	Comments
6(a)	<i>SP</i> ≥12			
	$SQ \ge 10$			
	<i>SR</i> ≥ 17	B1		S in correct place, (arrows) and capacities
	<i>YT</i> ≥ 18			
	<i>ZT</i> ≥17	B1	2	T in correct place, (arrows) and capacities
				* * * * * * * * * * * * * * * * * * * *
(b)	SPUYT 10	B1		
	SRVWZT 8	B1	2	
(c)(i)	Initial flow forward and backward			
	PU 2 and 10; UY 0 and 10	B1	_	
	RV 0 and 8; VW 1 and 8; WZ 2 and 8	B1	2	withhold one B1 if paths to <i>S</i> and <i>T</i> not updated
(ii)	Two correct routes and flows on Figure 6	M1		SPUYT 10
()	5			SRYWZT 8
	Correct additional flows			SPUXYT 2
	Max flow = 33	A1		SQVUXYT 6
				SRWXZT 5
	Adjustment of at least 4 edges	M1		SRWZT 2
	corresponding to flows (forward and backward)	IVII		(other possibilities
	Correct final flows forward and backward	A1cso	4	edges <i>UY</i> , <i>UX</i> , <i>WX</i> and <i>WZ</i> will be
	(must score A1 for table)	111050	•	saturated
	,			XY + XZ = 13 in back flow
(d)	Cut with value 33 is through	B1	1	
(4)	UY, UX, WX and WZ	D1	1	
	Total		11	
	TOTAL		75	

General Certificate of Education (A-level)
June 2011

Mathematics

MD02

(Specification 6360)

Decision 2

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Convright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
−x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD02

Q			Solution	on		Marks	Total	Comments
2(a)								
	3	1	0	4	1	M1		reducing columns first
	1	4	1	2	4			6
	1	0	3	1	2			
	2	3	2	0	0			
	0	5	1	2	1			
	3	1	0	4	1			then rows
	0	k	0	1	3			k = 3 stated or value 3 in table
	1	0	3	1	2			
	2	3	2	0	0			
	0	5	1	2	1	A1cso	2	AG
(b)(i)	Lines	through	columns	1, 2, 3 a	nd row 4	B1	1	
(ii)	3	1	0	3	0			
	0	3	0	0	2	M1		subtract 1 from all uncovered and add 1 to
	1	0	3	0	1			all double covered (condone one slip)
	3	4	3	0	0			
	0	5	1	1	0	A1	2	all correct ISW
	This n	ow requi	ires 5 line	es to cov	er zeros			
(c)	A2	В3	C1	D4	E5	B1		one of these correct
	A5	В3	<i>C1</i>	D2	E4	B1		second way correct
	A5	В3	<i>C</i> 2	D4	<i>E1</i>	B1	3	third way correct and no others
(d)	Minim	num total	l = 68 (m)	ins)		B1	1	
(e)	Replac	ce each e	lement <i>x</i>	by <i>N</i> – 2	c	E1	1	any value of N
	-			-	Total		10	

Q	Solution	Marks	Total	Comments			
3(a)	Row minima are $-4, -3, -7$	M1		both row minima and column maxima attempted (condone 2 errors)			
	Column maxima are -3, 6, 8	A1		all values correct			
	$\max (row min) = \min (col max) = -3$	E1		condone arrows pointing to this element but must state max (row min) and min (col max) or equivalent			
	Play-safe Tom II and Jerry A	B1	4				

MD02 (cont) O	Solution	Marks	Total	Comments	
3(b)(i)	Let Rohan play R_1 with prob p	1,141111	10001	- Comments	
	$\Rightarrow \text{ plays } \mathbf{R}_2 \text{ with prob } 1 - p$				
	When Carla plays C_1 ,				
	Rohan's expected gain = $3p + (1-p)$ = $1+2p$				
	$C_2:5p+(-2)(1-p)=7p-2$	M1		at least 2 expected gains correct unsimplified	
	$C_3:-p+4(1-p)=4-5p$	A1		all 3 correct unsimplified	
	5 3	M1		at least 2 lines correct	
	0	A1		all lines correct for $0 \le p \le 1$ and values	
	-2			at 0 and 1 clear	
				choosing highest point	
	7p-2=4-5p $12p=6$	M1		or using correct equation	
	$\Rightarrow p = \frac{1}{2} \Rightarrow \text{Rohan plays R}_1 \text{ 50\% of the}$	A1cso			
	time and R_2 50% of the time				
	Value of game = $7 \times \frac{1}{2} - 2 = \frac{3}{2}$ AG	B1	7	or $4 - \frac{5}{2} = \frac{3}{2}$ must see working	
(b)(ii)	When Rohan plays R_1 , expected loss for Carla is $3p + 5q + (-1)(1 - p - q)$				
	and when Rohan plays R_2 , expected loss for Carla is $p + (-2)q + 4(1 - p - q)$	M1		either expression correct unsimplified	
	$4p + 6q = \frac{3}{2} + 1$				
	$3p + 6q = 4 - \frac{3}{2}$	A1		correct simultaneous equations unsimplified	
	$\Rightarrow p = 0, \ q = \frac{5}{12}$	A1		condone 0.42 or better	
	\Rightarrow Carla never plays C_1 ,				
	plays C_2 with prob $\frac{5}{12}$				
	and plays C_3 with prob $\frac{7}{12}$	E1cso	4	Must have all 3 correct probabilities	
	Total		15		

MD02 (cont)											
Q				Solu	ıtion				Marks	Total	Comments
4 (a)	$5x + 3y + 10z \leqslant 15$								M1		2 inequalities correct
	$7x + 6y + 4z \leqslant 28$ $4x + 3y + 6z \leqslant 12$										or all 3 LHS & RHS correct but using <
									A1	2	all correct
(b)(i)	Choosing 3 from bottom row as pivot							t	B1		identified or used
	1	6	0	12 – 1	k 0	0	2	24	M1		row operations (even with wrong pivot)
	0	1	0	4	1	0	-1	3			
	0	-1	0	-8	0	1	-2	4	A1		one of rows 1, 2, 3 correct
	0	$\frac{4}{3}$	1	2	0	0	$\frac{1}{3}$	4	A1	4	all correct (condone multiples of rows)
(ii)	12-	k < 0		$\Rightarrow k$	>12				M1 A1	2	their '12 – k ' < 0 SC B1 for $k \ge 13$
(c)(i)	1	6	0	-8	0	0	2	24			
	1	Ü	Ü	Ü	O	O	2	21			
	0	1	0	4*	1	0	-1	3			correct pivot from z column 4*
									M1		(identified or used)
	0	-1	0	-8	0	1	-2	4			
	0	$\frac{4}{3}$	1	2	0	0	$\frac{1}{3}$	4			
	1	8	0	0	2	0	0	30			
									A1		one of rows 1, 3 or 4 correct
	0	$\frac{1}{4}$	0	1	$\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{3}{4}$			
	0	1	0	0	2	1	_4	10	A1		another of rows 1, 3 or 4 correct
		5					5				
	0	$\frac{3}{6}$	1	0	$-\frac{1}{2}$	0	$\frac{3}{6}$	$\frac{5}{2}$	A1	4	all correct (condone multiples of rows)
(ii)	(ii) Maximum value of <i>P</i> now reached $P = 30, x = 0, y = \frac{5}{2}, z = \frac{3}{4}$						ned		E1		their tableau must have no negatives in top row
									B1√		ft their values from their tableau provided at least 2 marks earned in (c)(i)
	$s = 0, \ t = 10, \ u = 0$								B1cao	3	condone up to 2 slips in their final tableau
							ı	Total		15	

MD02 (cont)					
Q	Solution	Marks	Total	Commo	ents
5(a)	Cut value = $40 + 27 + 0 + 24$				
, ,	=91	B1	1		
(b)	ABDX 16	B1			
,	GFBX 18	B1			
	GHEX 20	B1	3		
(c)(i)	One correct route with additional flow	M1		any feasible route and	flow
	Another 2 routes and flows correct	A1		total flow at least 80	
	All routes correct with total flow = 85	A1cso			
	Forward and backward flows on diagram (directions must be clear)	M1		at least 8 edges with pa 'correct'	irs of values
	Augmenting flows	A1cso	5	correct	
	Consider other possible correct flows		0 B	18 25 40 120 120 120	Route Flow ABDX 16
	Condone diagram as shown but really	0 1 8 08	1/.	84 33 H 01 20	GFBX 18
	should have initial flows in DE, etc	1	15		GHEX 20
	should have illied from it DD, etc	- /	0 118	3 " / 2	GCBX 7
		C.		0	ACBX 8
			F	FH12 0	+ + + + + + + + + + + + + + + + + + + +
		0 1 17 0	x./	WA A	
			1819	11 2024	GHEDBX 4
		/	16.81	/	GFDBX 1
		G	201	H	
			20 313	5	
(ii)	Max flow = 85	B1			
	Correct max flow	B1	2	72. 72. 6	30 V
				A 16 B	38
	Consider other possible correct flows				
				8 15	27
				184	/ 120
					4 1
				12	D. E.
				F	
				70 10	124
				19	1-
				G 35	Н
(d)	Considering 'their' $AB+CB+FB-45$	M1			
	= 4 fewer				
	\Rightarrow max number = 81	A1cao	2		
	Total		13		

Q	Solution	Marks	Total	Comments
6	Wednesday profits	M1		4 more calculations/ profits correct
		A1		6 more profits correct
		A1		all profits correct
	Tuesday: use of maxima from Wednesday	M1		6 more calculations/profits correct
		A1		8 profits correct
		A1√		all profits correct
				ft one slip from Wednesday figures
	Monday values correct	A1√		all profits correct
				ft one slip from Tuesday figures
	(Monday builds shed) D	M1		Choosing largest Monday profit from their table
	\Rightarrow order $DBAC$	A1cso	9	
				SC B1 only for order DBAC
				NMS or without "correct" table

Stage (Day)	State (Sheds already built)	Action (shed to build)	Calculation	Profit in pounds
Thursday	A, B, C	D		90
-	A, B, D	С		87
	A, C, D	В		76
	B, C, D	A		70
Wednesday	A, B	C	84 + 90	174
Wednesday	71, 5	D	88 + 87	175 →
	A, C	B	71 + 90	161 →
	71, 0	D	82 + 76	158
	A, D	В	74 + 87	161 →
	, -	C	83 + 76	159
	В, С	A	65 + 90	155
	, -	D	86 + 70	156 →
	B, D	A	69 + 87	156 →
	,	С	85 + 70	155
	C,D	A	66 + 76	142
		В	73 + 70	143 →
Tuesday	A	В	72 + 175	247 →
Tucsuay	А	C	83 + 161	244
		D	84 + 161	245
	В	A	60 + 175	235
	Б	C	80 + 156	236
		D	83 + 156	239 →
	С	A	57 + 161	218
		В	68 + 156	224
		D	85 + 143	228 →
	D	A	62 + 161	223
		В	70 + 156	226 →
		С	81 + 143	224
Monday	-	A	50 + 247	297
Monday	-	B	65 + 239	304
		C	70 + 228	298
		D	80 + 226	306 →

Schedule

	Monday	Tuesday	Wednesday	Thursday
Shed to build	D	В	A	С

Total	9	
TOTAL	75	

General Certificate of Education (A-level) January 2012

Mathematics

MD02

(Specification 6360)

Decision 2

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

mark is for method
mark is dependent on one or more M marks and is for method
mark is dependent on M or m marks and is for accuracy
mark is independent of M or m marks and is for method and accuracy
mark is for explanation
follow through from previous incorrect result
correct answer only
correct solution only
anything which falls within
anything which rounds to
any correct form
answer given
special case
or equivalent
2 or 1 (or 0) accuracy marks
deduct x marks for each error
no method shown
possibly implied
substantially correct approach
candidate
significant figure(s)
decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	x = 4 $y = 12$ $z = 13$	B1 B1 B1	3	
(b)	BDHJ and $CEIJ$	M1 A1	2	first correct path 2nd correct and no others
(c)	G Float = 3	B1 B1	2	
(d)	One of their CPs correct height <i>B</i> , <i>D</i> , <i>H</i> , <i>J</i> and <i>C</i> , <i>E</i> , <i>I</i> correct	M1 A1		and correct durations and correct durations
	Number of workers 6 5 4 B 2 C C 0 0 1 2 3 4	5 6 7 8	-E	12 13 14 15 16 17 18 19 20 days
	A starting at 0 and ending at 3 F starting at 6 and ending at 11 G starting at 13 and ending at 14	M1 A1 A1	5	one correct with correct height two correct with correct height all correct with correct height withhold first A1 earned if it is not clear which activities take place at any given time withhold another A1 if "holes" appear in histogram
(e)	New earliest J 22 days	B1		assuming activities continuous
	Minimum extra time 5 days Total	B1	2 14	assuming activities continuous

Q Q		Solution			Marks	Total	Comments
2(a)	Hungarian alg minimum to Each new en not scored ⇒ Hungaria maximum tot	tal try gives me n algorithm r	asure of	-	E1 E1	2	First E1– fairly generous for idea of "minimising" or "points not scored". Second E1 is strict.
(b)	Replacing x b						
	8 6 2 13 12 6 13 6 8 8	3 18 10 6 16	0 6 2 8 14	4 6 14 4 8	B1		Must see this table
	0 11 10 4 9 2 0 0	8 2 8	4 0 4 6	4 12 0 0 4	M1		reducing rows; ft one slip from above & allow one further slip
	0 11 10 4 9 2 0 0	6 0	4 0 4 6	4 12 0 0	A1cso	3	check working is correct since most values in final table are given. ($p = 14$ $q = 9$)
(c)	Lines coverin	ag R_4 , R_5 ar	C_1 , C_2	4	B1		4 correct lines
	8 2 0 7 10 0 13 2	10 2	0 4 0 8	0 0 8 0	M1		subtracting 4 from each uncovered and adding 4 to each double covered (condone 2 slips)
	4 0		10	0	A1	3	all correct
(d)(i)		A4 B1 C2 A5 B1 C4			M1 A1 A1	3	or one full matching with rings etc one correct matching second correct and no others
(ii)	Total = 153			Total	B1	1 12	

Q Q	Solution	Marks	Total	Comments
3(a)	For each pair of strategies	E2,1		E1 for general idea of
	Roz gain + Colum gain = 0		2	Roz gain + Colum gain = 0
(b)	Colum's max are -2 , 3, -1 min (colum max) = -2	E1		must see these values for E1
	\Rightarrow play safe is C_1	B1	2	
(c)(i)	Delete R_2 (PI by further work) Since R_3 dominates R_2	M1 A1	2	$\begin{bmatrix} C_1 & C_2 & C_3 \\ -2 & -6 & -1 & R_1 \\ -3 & 3 & -4 & R_3 \end{bmatrix}$
(ii)	Let Roz play R_1 with prob p			
	C_1 expected gain: $-2p - 3(1-p) = p - 3$			
		2.51		
	$C_2:-6p+3(1-p)=3-9p$	M1		2 expressions unsimplified ft their matrix
	$C_3: -p-4(1-p)=3p-4$	A1		all correct
	$ \begin{array}{c} 3 \\ 0 \\ -3 \\ -4 \end{array} $	M1 A1		plotting 3 expected gains for $0 \le p \le 1$ correct gains plotted accurately
	Solving $p-3=3-9p$	m1		choosing highest point of 'their' region or correct pair solved
	$\Rightarrow 10p = 6$			
	$p = \frac{3}{5}$	A1		
	\Rightarrow Roz plays R ₁ with probability $\frac{3}{5}$ and			
	R_3 with probability $\frac{2}{5}$	E1cao	7	must see R_1 and R_3
	Total		13	

Q	Solution	Marks	Total	Comments
4(a)(i)	x-column	B1		
	pivot = 6	B1		
	$\frac{2}{2} = 1$, $\frac{3}{6} = \frac{1}{2}$ (and $\frac{1}{2} < 1$)			need to see correct quotients considered
	smallest positive quotient	E1	3	negative value must be mentioned as being considered but rejected
(ii)	P x y z s t u value 1 0 1 0 1 $\frac{1}{3}$ 0 7 0 0 13 1 3 $-\frac{1}{3}$ 0 1 0 1 -5 0 -1 $\frac{1}{6}$ 0 $\frac{1}{2}$ 0 0 -14 0 -4 $\frac{1}{6}$ 1 $4\frac{1}{2}$	M1		row operations
	0 0 13 1 3 $-\frac{1}{3}$ 0 1	A1		1st, 2nd or 4th row correct
	$0 1 -5 0 -1 \frac{1}{6} 0 \frac{1}{2}$	A1		another of these 3 correct
	$0 0 -14 0 -4 \frac{1}{6} 1 4\frac{1}{2}$	A1	4	all correct (condone multiples of rows)
(b)(i)	No negatives in top row	E1	1	but must have no negative values in "their" top row
(ii)	One (inequality still has slack)	B1	1	
(c)(i)	P = 7	B 1√		FT their tableau
	$x = \frac{1}{2}$, $y = 0$, $z = 1$	B1 cao	2	condone one slip in final tableau
(ii)	Substituting "their" values from (c) (i)			
	$\frac{1}{2}k + 0 + 3 = 7$	M1		
	$\Rightarrow k = 8$	A1	2	
			13	

			50	lution		Marks	Total	Comments
5(a)	Stage		From	Calculation				
	1	G	T		15			
		H I	T T		17 26	B1		stage 1 correct
		1	1		20			
	2	D	G	6 + 15	21 ←			
			Н	3 + 17	20			
		Е	G	-3 + 15	12	M1		7 values at stage 2 attempted
			Н	-6 + 17	11	1,11		with 5 unsimplified calculations correct
			I	-13 + 26	13 ←			with 5 diffilling calculations correct
		F	H I	-7 + 17 -14 + 26	10 12 ←	A1		stage 2 correct
			1	-14 + 20	12 ←	Al		stage 2 correct
	3	A	D	<u>-4 + 21</u>	17	M/1		use of two of "their" maying from
			Е	6 + 13	19 ←	M1		use of two of "their" maxima from
		В	D	12 + 21	33 ←			Stage 2 to Stage 3
			Е	16 + 13	29			
		-	F	18 + 12	30			
		С	E F	14 + 13 $13 + 12$	27 ← 25			
			Г	13 + 12	25	A1		stage 3 correct
	4	S	A	12 + 19	31*			
			В	-2 + 33	31*			
			С	3 + 27	30	A1cso	6	stage 4 & all other values correct
					_			
(b)	Maxim	num pr	ofit =	31		B1√		£31 million
		r	•					
	SAEI	T ai	nd S	BDGT		B1		one correct path
[~ · · · · ·	_ ~				B1	3	second correct path and no other
					Total		9	F

0		Solution		Marks	Total	Comments
6(a)	10 + 13 -1 +			M1		3 values added and -1 (condone one slip
5 (33)		= 39		A1	2	
(b)(i)	<i>DE</i> 12			B1		on Figure 2
(-)()	FG 7			B1	2	
(ii)	arc	forward	backward	D 1		
(11)	SA SA	3	1			
	\overrightarrow{AB}	1	1			
	BT	0	1			
	SC	0	2			
	CA CA	0	1			
	AD	0	1			
	CD	1	1			
	DE	1				
	BE	l 1	2 3			
	ET	1	3	M1		at least 6 pairs correct on Figure 3
		2				(must have arrows)
	SF	1	1			
	FC	1	2			
	FD	1	0			
	FG	0	1	A1	2	all correct
	DG	2	1			
	EG	1	1			
	GT	2	3			
(iii)	Table	Т	_			
	Path	Extra Flow		M1		1 correct path and extra flow
	SABET	1				
	SFDGT	1		A1		all correct
	SACDGT	1				
		1	<u> </u>			DEG triangle may have different flows
						with implications to triangle GET.
	Network				ı	'
		A	χ^0 B			
		<u>*</u>	\frac{1}{X_2			
		1 //	12			
	3/	1 0),(0		
	32		\	0		
	//	χ ² ₁ // _ν 1\\\	43	r		
	0	χ ² ₁ // _ν 1\\\	43	$E \xrightarrow{2^1}$	T	
	$s \leftarrow \underbrace{\frac{0}{2}}$	$C \xrightarrow{X^{0}} X_{0}$ $C \xrightarrow{X^{0}} X_{2}$	43	$E \xrightarrow{\frac{2^1}{3_4}}$	T	
	$s \xrightarrow{0} \frac{1}{2}$	$C \xrightarrow{X^2 0} X_0 \xrightarrow{X^0} X_2$	4 ₃	$E \xrightarrow{\frac{2^1}{3_4}}$	T	
	$s \leftarrow \underbrace{\frac{0}{2}}$	$C \xrightarrow{X^{0}} X_{0}$ $C \xrightarrow{X^{0}} X_{2}$	4_{3}	$E \xrightarrow{2^1}$	T	
	$s \xrightarrow{0} \frac{1}{2}$	$C \xrightarrow{X^2 0} X_0 \xrightarrow{X^0} X_2$	4 ₃	$E \xrightarrow{\frac{2^1}{3_4}}$	T	
	$s \xrightarrow{0} \frac{1}{2}$	$C \xrightarrow{X^2 0} X_0 \xrightarrow{X^0} X_2$	$\begin{array}{c c} 4_{3} \\ \hline 0 \\ \hline 1 \\ 2_{3} \\ \hline 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$E \xrightarrow{\frac{2^1}{3_4}}$	T	
	$s \xrightarrow{0} \frac{1}{2}$	$C \xrightarrow{X^2 0} X_0 \xrightarrow{X^0} X_2$	4 ₃	$E \xrightarrow{\frac{2^1}{3_4}}$	T	
	$s \xrightarrow{0} \frac{1}{2}$	$C \xrightarrow{X^2 0} X_0 \xrightarrow{X^0} X_2$	$\begin{array}{c c} 4_{3} \\ \hline 0 \\ \hline 1 \\ 2_{3} \\ \hline 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$ \begin{array}{c c} E & \underline{21} \\ \hline 84 \\ 0^{\chi^2} \\ 54^3 \end{array} $	T	1 noth correctly augmented forward and
	$s \xrightarrow{0} \frac{1}{2}$	$C \xrightarrow{X^{2} \emptyset} X_{0} \xrightarrow{X^{0}} X_{2}$	$\begin{array}{c c} 4_{3} \\ \hline 0 \\ \hline 1 \\ 2_{3} \\ \hline 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$E \xrightarrow{\frac{2^1}{3_4}}$	T	1 path correctly augmented forward and
	$s \xrightarrow{0} \frac{1}{2}$	$C \xrightarrow{X^{2} \emptyset} X_{0} \xrightarrow{X^{0}} X_{2}$	$\begin{array}{c c} 4_{3} \\ \hline 0 \\ \hline 1 \\ 2_{3} \\ \hline 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$ \begin{array}{c c} E & \underline{21} \\ \hline 84 \\ 0^{\chi^2} \\ 54^3 \end{array} $	T	backward
	$s \xrightarrow{0} \frac{1}{2}$	$C \xrightarrow{X^{2} \emptyset} X_{0} \xrightarrow{X^{0}} X_{2}$	$\begin{array}{c c} 4_{3} \\ \hline 0 \\ \hline 1 \\ 2_{3} \\ \hline 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$ \begin{array}{c c} E & \xrightarrow{2^{1}} \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ & & & & \\ \end{array} $ $ \begin{array}{c c} 0^{*2} \\ 5^{4} \\ \end{array} $ $ \begin{array}{c c} M1 \end{array} $		backward but must have earned M1 in part (b)(ii)
	$s \xrightarrow{0} \frac{1}{2}$	$C \xrightarrow{X^{2} \emptyset} X_{0} \xrightarrow{X^{0}} X_{2}$	$\begin{array}{c c} 4_{3} \\ \hline 0 \\ \hline 1 \\ 2_{3} \\ \hline 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$ \begin{array}{c c} E & \underline{21} \\ \hline 84 \\ 0^{\chi^2} \\ 54^3 \end{array} $	4	backward
(c)(i)	$s \xrightarrow{0} \frac{1}{2}$	$ \begin{array}{c c} X^{2} \\ 1 \\ X_{0} \\ C \end{array} $ $ \begin{array}{c c} X^{0} \\ X_{2} \end{array} $ $ \begin{array}{c c} X^{0} \\ X_{2} \end{array} $	$\begin{array}{c c} 4_{3} \\ \hline 0 \\ \hline 1 \\ 2_{3} \\ \hline 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$ \begin{array}{c c} E & \xrightarrow{2^{1}} \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ & & & & \\ \end{array} $ $ \begin{array}{c c} 0^{*2} \\ 5^{4} \\ \end{array} $ $ \begin{array}{c c} M1 \end{array} $		backward but must have earned M1 in part (b)(ii)

Q	Solution	Marks	Total	Comments
6(c) cont. (ii)	Max flow 12 3 5 9 C 12 D 12 E 16 6 3 8 2 17	B2		correct flow of 37 condone 2 slips or omissions in flow of 37 or "correct" feasible flow of 36 for SC1
	F / G		2	
(d)	Cut through AB, AD, CD, FD and FG	B1	1	$\{S,A,C,F\}\{B,D,E,G,T\}$
	Total		14	
	TOTAL		75	

General Certificate of Education (A-level) June 2012

Mathematics

MD02

(Specification 6360)

Decision 2

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
−x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q Q	Solution	Marks	Total	Comments
1(a)	$ \begin{array}{c c} A \\ \hline 0 & 7 & 8 \end{array} $ $ \begin{array}{c c} B \\ \hline 0 & 5 & 5 \end{array} $ $ \begin{array}{c c} F \\ \hline 0 & 5 & 6 \end{array} $ $ \begin{array}{c c} F \\ \hline 6 & 4 & 10 \end{array} $	K 14 5 19 L N 15 4 19 19 2 21		
	Forward pass Backward pass	M1 A1 M1 A1	4	condone one slip (follow through) all correct condone one slip (follow through) all correct
(b)	Critical paths $BEGKN$ $DFILN$ Minimum completion time is 21 days	M1 A1 B1	3	first path correct second path and no others
(c)	Cascade diagram One of 'their' CPs correct B, D, E, F, G, I, K, L, N A, C, H, J, M	M1 A1 M1 A1 A1	5	may be in blocks or bars (see examples) ft their CP these activities correct 3 of these with correct start and duration 3 correct with correct slack indicated all 5 correct with correct slack
	(May valve of vie) 10	MI		Slack A 0-7 7-8 C 0-5 5-6 H 10-12 12-14 J 6-8 8-16 M 15-18 18-19
(d)	(Max value of x is) 10 $\Rightarrow x \leq 10$	M1 A1 cao	2	considering $J_{\text{latest}} - J_{\text{earliest}}$ (condone $x < 11$ for SC2) NMS $x \le 10$ award M1 A1
	Total		14	

Q			Sol	ution	Marks	Total	Comments
2(a)	0 1	2	4	3			may have large number instead of **
	** 3	3	**	0			throughout this question
	1 4	4	2	0			
	0 0	2	0	0	M1		row adjustment (condone one slip)
	0 3	2	0	0			identical numerical error in more than one
							term is one slip
	0 1	0	4	3			
	** 3	1	**	0			
	1 4	2	2	0	A1		then columns
	0 0	0	0	0			1
	0 3	0	0	0	B1	3	four lines
							through rows 1, 4 & 5 and column 5
							ft one slip from above for next two marks
(I-)	. 1		J 1	4. 41.1	N/1		G Ghaintines and called a second of the
(b)	and – 1			to double covered	M1		ft 'their lines and table' provided no more than one slip in earlier table
	and – i	i to un	COVER	zu -			must make ≤ 2 further errors for M1
	0 1	0	4	4			must make \(\geq 2 \) further errors for twif
	** 2	0	4 **	0			
	0 3	1	1	0	A1√		$(\leqslant 1 \text{ further error in adjustment })$
	0 0	0	0	1			(Trainer error in adjustment)
	0 3	0	0	1	A1	3	correct
	0		Ü	-			
(c)	B4 and	D5 all	ocated		M1		(or one complete matching ringed)
	A1 B4			E3	A1		one correct allocation
	A3 B4	L C1	D5	E2	A1	3	2nd matching and no others
							1A 2C 3E 4B 5D
							1C 2E 3A 4B 5D
(4)	12	. 16	. 21	. 20 . 15 7			
(d)				+ 20 + 15 + 20 + 18			
	01 10 +			$\begin{array}{cccc} + 20 & + 18 & & \\ \text{otal Time} & = 85 \text{ (min)} \end{array}$	B1	1	
		-	141111 1	om time – os (iiiii)	Di	1	
				Total		10	

MD02 Q				Soluti	ion			Marks	Total	Comments
3(a)		х	у	z	S	t	value			
	1 -	k	-6	-5	0	0	0			may have 1's in 's' and 't' columns
	0 2	2	1	4	1	0	11	B1		interchanged second row correct
		2 1 ($\frac{1}{3}$	4	1 0	0 1	18	ві В1	2	third row correct
		•		, 0	Ü	•	10	D 1	_	time to we contect
										may earn next B1 M1 if no slack variables
(b)	1 2	-k	0	7	0	2	36	B1		pivot is 3 (identified or used)
	0	$\frac{5}{3}$	0	2	1	$-\frac{1}{3}$	5	M1		row operations (even with wrong pivot)
		3	U	2	1	$-\frac{1}{3}$	3	1411		(obtaining 0 in pivot column)
	0	1	1	2	0	1	6			
	U	3	1		U	3	O	A1		first or second row correct
								A1	4	all correct (condone multiples of rows)
								711	7	an correct (condone matriples of fows)
(c)(i)	(k=1)					1 .		E1		
	since to		are no	nega	tive v	alues 1	ın	E1		provided there are no negative values in top row
	top rov	vv								" all positive values " scores E0
					$(P_{\rm m}$	$_{\text{nax}} =)$	36	B1√	2	ft their tableau
(**)							~			
(ii)	k=3:	new	pivot	from	x-col	umn is	$\frac{5}{3}$	M1		ft their pivot if appropriate but must have
	used b	y atte	mpti	ng rov	v opei	ration	3	1411		slack variables
	1	0 (0	$\frac{41}{5}$	$\frac{3}{5}$	$\frac{9}{5}$	39	A 1 ^		Control of the contro
						1		A1 ✓		first or last row correct ft one slip from their tableau in part (b)
	0	1 (0	$\frac{6}{5}$	$\frac{3}{5}$	$-\frac{1}{5}$	3			but must use correct pivot
	0	0	1	<u>8</u> <u>5</u>	1	$\frac{2}{5}$	5			_
		0 .	1	5	$-{5}$	5		A1	3	all correct (condone multiples of rows)
	Optim	ıım re	ache	d (or	P	-)		E1		must have earned M1 and have no
	Optim	um ic	aciic	u (OI	• max	–)		Lı		negative values in top row
						39		B1√		ft their tableau
		1	c = 3	3. v	= 5.	z = 0		B1 cso	3	must have correct final tableau
		,		=0, t		~ ~				
							/D) / 7		1.4	
							Total		14	

Q Q	Solution	Marks	Total	Comments
4(a)(i)	Row min -6 , -3 , -5 , -4	TVILLI INS	1000	Comments
	Max (row min) = -3	M1		attempt to find maximin and minimax condone one slip in values
	Col max 5 , 4 , -3	A1		all rows min and col max values correct
	Min (col max) = -3			and max (row min) = -3 identified and min (col max) = -3 identified
	max (row min) = min (col max) = -3			
	⇒ game has a stable solution	E1	3	full statement involving maximin and minimax and both values $= -3$
(ii)	Adam plays A_2 & Bill plays B_3	B1	1	
(iii)	Value of game for Bill is +3	B1	1	Examiners must use the correct symbol for marks carried forward at the bottom of page 9 and top of page 10, ie ringed totals with arrows through them.
(b)(i)	(Never play) C_2 C_2 dominated by C_1 (-3>-4 and 2>1)	B1	1	correct strategy stated and correct reason condone $3 < 4$ and $-2 < -1$
(ii)	$C_1: 3p-2(1-p)$	M1		either correct unsimplified
	$C_3: -3p + 5(1-p)$	A1	2	both correct unsimplified $\{5p-2, 5-8p\}$
(iii)	3p - 2(1-p) = -3p + 5(1-p)	M1		equating their 2 expressions
	$\Rightarrow p = \frac{7}{13}$	A1	2	
(iv)	Value of game = $5 \times \frac{7}{13} - 2$			or $5-8\times\frac{7}{13}$
	$=\frac{9}{13}$	B1	1	
	Total		11	

MD02	1						
Q		Solution			Marks	Total	Comments
5(a)(i)	(<i>BAC</i> :	70, 55, 75)					
		nnual cos	t = 55	B1		£55 000	
(**)	4.D.C. ()	1	- -	75 \			
(ii)	ABC (in	volves costs 60,		75)	D 1		060,000
		Least ar	nnual cos	$\iota = 60$	B1		£60 000
	ABC is be	etter, since 60 >	- 55		E1	3	statement & reason with both least annual costs correct
(b)	Year 3	75, 80, 60					
	Year 2	Calc	Value				
	1 car 2	min (75, 75)	75	←			
		min (70, 80)	70		M1		Finding minima for 4 of "their" pairs in
		min (55, 75)	55		A1		Year 2 4 correct comparisons seen in Year 2
		min (60, 60)	60	←	AI		4 correct comparisons seen in Tear 2
		mm (00,00)	00				
		min (65, 80)	65	←			
		min (80, 60)	60		A1		all values correct and comparison figures
							shown and correct for Years 2 and 3
	Year 1	(60, 75)	<i>c</i> 0		1		11 601 - 11 601 - 12 00 - 10 00 00 00 00 00 00 00 00 00 00 00 00
	A	min (60, 75)	60		m1		choosing all "their" maxima from Year 2 and all "their" comparisons correct
	R	min (70, 60)	60				and an their comparisons correct
	D	iiiii (70,00)	00				
	C	min (65, 65)	65	←	A1cso		all correct and word " minimum " seen in working – (condone "min" seen once)
	O 1:	1 ' CAD			N/1		
	Optimum	order is <i>CAB</i>			M1		order starting with their maximum value from Year 1 in table
							BUT maximin must have been attempted
					A1cso	7	correct order;
							allow this A1cso if only error in table is omission of word "minimum"
							ag pi s gipis
							SC B1 for <i>CAB</i> if no evidence of maximin from table (or network).
				Total		10	

MD02 Q	Solution	Marks	Total	Comments
6(a)(i)	18 + (0+) 10 + 3 + 5 (= 36)	B1	1	
(ii)	30, 32, 36 (missing cut values)	В3	3	B1 each value correct
(iii)	Max flow = 29 because value of minimum cut is 29	B1 E1	2	Award B0 E1 if their min ^m cut is < 29 and min ^m value explained as max flow
(iv)	S 17 17 17 10 17 10 17 10 17 10 17 10 17 10 17 10 10 10	B1 cao	1	may have 9 8 see alternative solution on next page
(b)(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1		potential flow (forward and back) 4 pairs 'correct' including SC and AT ft their (a)(iv) provided 0 < flow < 30
	s $\frac{4}{5}$ $\frac{1}{5}$ $\frac{1}{5}$	A1√		all pairs correct (condone missing 0s) ft their (a)(iv) if correct flow < 29
	A. 481 T	m1		one correct flow in table
	18 17 17 134 134 17 10 12 13 15 10 10 10 13 13 13 13 13 13 13 13 13 13 13 13 13	A1		table correct $ \begin{array}{c c} SAT & 1 \\ SCT & 1 \\ SCBAT & 2 \end{array} $ If (a)(iv) flow < 29 then may score A1 for correct table giving max flow of 33
	8 868 C	m1		(see also the alternative solution) modifying flows (forward and back) 1 flow correct ft their initial flow
		A1	6	modified flows all correct, including all 0s (may score A1 from a correct flow < 29 seen in (a)(iv) if final flow correct)
(ii)	new max flow = 33	B1		
	3 10 T	M1		6 flows correctly interpreted from their labelling procedure provided M2 or M3 scored in (b)(i) (may have AB 2, AT 16, BT 9 – see over)
	s $\frac{1}{8}$ c	A1	3	flow correct SC B1 if flow of 33 shown correctly but not from correct labelling procedure
	Total		16	
	TOTAL		75	

(iv) Indicate on the diagram below a possible flow along each edge corresponding to this maximum flow.

(1 mark)

- (b) The capacities along SC and along AT are each increased by 4 litres per second.
 - (i) Using your values from part (a)(iv) as the initial flow, indicate potential increases and decreases on the diagram below and use the labelling procedure to find the new maximum flow through the network. You should indicate any flow augmenting paths in the table and modify the potential increases and decreases of the flow on the diagram.

 (6 marks)

Path	Additional Flow
SCBAT	3
SAT	1

(ii) Use your results from part (b)(i) to illustrate the flow along each edge that gives this new maximum flow, and state the value of the new maximum flow. (3 marks)

New maximum flow is 33 litres per second

General Certificate of Education (A-level) January 2013

Mathematics

MD02

(Specification 6360)

Decision 2

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Convright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
−x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

O	Solution	Marks	Total	Comments
2(a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	Maximin (row) = 3 Minimax (col) = 3	M1 A1		Either correct, including correct values Both correct, written as equations PI by
	As Maximin (row) = Minimax (col) There is a stable solution	CSO E1		Must have equation and statement and scored first 2 marks
	(Play safe) (H) B (Play safe) (W) F	B1	4	Both correct
(b)	Saddle point (B,F)	B1	1	
	Total		5	

MD02			C -14*	0.00		Manle	T-4-1	Co
Q 2(a)	(0		Solution		()	Marks	Total	Comments
3(a)	$\binom{8}{5}$	5	0	9	6			
	5	6	5	9	7	B1	1	
	11	10	12	12	11			
	(9	5	8	12	9)			
(b)	Add or	a avtra r	row ≥ 12	,		B1		
(0)					<i>(</i>) <i>(</i> 0)	Di		
	$\binom{8}{5}$	5 6	0 5	9 9	$\begin{pmatrix} 6 \\ 7 \end{pmatrix} \begin{pmatrix} (0) \\ (5) \end{pmatrix}$			
	5				` ′			
	11	10	12	12	11 (10)			
	9	5	8	12	9 (5)			
	(12	12	12	12	12)(12)			
	8	5	0 9	9 6				
	0	1	0 4			M1		3 rows correct from row reduction
	1 4	0 0	2 2 3 7					
	0	0	0 0			A1		All correct
	(8	5	P	9	6			Alternatives
	0	1	ø	4	2			(86-
	1	0	2	2	1			
	4	0	3	7	4			
	\ \	0	•	0	-0)			4 0 3 7 4
	(Zeros	correct	ly covere	d by 4 lin	es)	B1F		(0 0 0 0)
			ines, not	optimal		E1		*
	(reduc	e by 1)						
	8	5	ρ	8	5			7 (8) 5 (6) D (0) 8 (9) 5 (6)
	ф	1	0	3	1			0 (0) 2 (2) 1 (0) 4 (4) 2 (2)
		D D	2	1	0 3 0			0 (0) 0 (0) 2 (1) 1 (1) 0 (0)
	1	Y	1	0	0			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	=	*	-	-	-	B1		
	~ 1·	, ,	,• •			(E1)		, II
	5 lines	needed	, optimal			(E1)		*or earned here
	Match	WC.	XA, YE,	ZB. (-	-D)	В1		
		= 151				B1	8	
					Total		9	

Q	Solution	Marks	Total	Comments
(4)(a)(i)	Max Flow = 50			
	(Min cut = 50)	E1		Either statement
(ii)	35 ≤ max flow ≤ 50 (or min cut)	E1, E1		E1 for strict inequalities
(iii)	Error or contradiction	E1	4	oe
(b)	At F,			
	$ \begin{cases} flow in \geq 8 \\ flow out \leq 7 \end{cases} $	M1 A1	2	Stating F and one of the 'flows'
	Total		6	

MD02				
Q	Solution	Marks	Total	Comments
5(a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B2,1,0	2	All correct, 3 rows correct
(b)(i)	z-col: $\frac{16}{1}, \frac{17}{2}, \frac{19}{2}$ Min, R_3 as pivot	M1 A1	2	
(ii)	$1 \frac{1}{2} -1 0 0 1\frac{1}{2} 0 \frac{51}{2}$	M1		Row operations
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1		One row (other than R_3) correct
	$0 \frac{1}{2} -1 1 0 \frac{1}{2} 0 \frac{17}{2}$			_
	0 1 1 0 0 -1 1 2	A1	3	All correct
	Alternative 2 1 -2 0 0 3 0 51 0 1 4 0 2 -1 0 15 0 1 -2 2 0 1 0 17 0 1 1 0 0 -1 1 2	(M1) (A1) (A1)		
(c)(i)	$y \text{ col } \frac{15}{4}, \left(-\frac{17}{2}\right), \frac{2}{1}$ R_4 as pivot	B1		Fully correct description
	$ \begin{vmatrix} 1 & 1\frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} & 1 & \frac{55}{2} \\ 0 & -1\frac{1}{2} & 0 & 0 & 1 & 1\frac{1}{2} & -2 & \frac{7}{2} \\ 0 & 1\frac{1}{2} & 0 & 1 & 0 & -\frac{1}{2} & 1 & \frac{21}{2} \end{vmatrix} $	M1		Row operations
	0 1 1 0 0 -1 1 2 Alternative	A1	3	All correct
	2 3 0 0 0 1 2 55	(M1)		
	$\begin{bmatrix} 0 & -3 & 0 & 0 & 2 & 3 & -4 & 7 \\ 0 & 3 & 0 & 2 & 0 & -1 & 2 & 21 \end{bmatrix}$			
	0 -3 0 0 2 3 -4 7 0 3 0 2 0 -1 2 21 0 1 1 0 0 -1 1 2	(A1)		
(c)(ii)	Optimal			
	$P = \frac{55}{2}$	D.1		
		B1		Both statement and value needed. OE
	$x=0, y=2, z=\frac{21}{2}$	B1		
	$s = t = 0, \ r = \frac{7}{2}$	B1	3	
	Total		13	

Q	Solution	Marks	Total	Comments
6(a)	$R_C > R_B$	E1	1	oe
(b)	$ \begin{array}{ccc} A \begin{pmatrix} -2 & 0 & 3 \\ 4 & 1 & -1 \end{pmatrix} \\ K \text{ plays } A \text{ prob } p \\ C \text{ prob } 1-p \end{array} $			
	P plays D, K wins $-2p+4(1-p)$ $(=4-6p)$ E, K wins $1-p$	M1 A1		Allow 2 expressions in unsimplified form All 3 correct
	F, K wins $3p-1(1-p)$ $(=-1+4p)$	AI		All 3 correct
	3			
	-1	M1		Must have 3 lines
	-2	A1		With values shown
	Max at $1 - p = -1 + 4p$	M1		Identifying correct maximum from their graph
	$p = \frac{2}{5}$			Both stated, coming from equating
	(K plays) A prob $\frac{2}{5}$, C prob $\frac{3}{5}$	A1		correct two equations and M2 scored
	Value of game $=\frac{3}{5}$	B1	7	

Q	Solution	Marks	Total	Comments
6(c)	P plays D prob p			
	E " q			
	F " $1-p-q$			
	K plays A, P loses	M1		Either (unsimplified) expression correct
	-2p + 3(1-p-q)=3-5p-3q			
	K plays C, P loses			
	4p+q-1(1-p-q) = -1+5p+2q			
	,			
	$3 - 5p - 3q = \frac{3}{5}$			
	$-1 + 5p + 2q = \frac{3}{5}$	m1		Equating BOTH of their expressions to
	$\frac{3}{2} \qquad -q = \frac{6}{5}$			value of their game
	$2 -q = \frac{3}{5}$			
	$q = \frac{4}{5}$	A1		Or for finding <i>p</i>
		CSO		
	$5p + \frac{8}{5} - 1 = \frac{3}{5}$			
	p = 0			
	P plays D prob 0			
	E , prob $\frac{4}{5}$			
	3	E1	4	All three needed, must have scored
	F , prob $\frac{1}{5}$	Li	7	previous A mark
	Alternative method			
	Probability of <i>D</i> is 0	(E1)		OE, might be earned in final line
	$3(1-p) = \frac{3}{5}$ or $p-1(1-p) = \frac{3}{5}$	(M1)		Or equating the expressions
	$p = \frac{4}{2}$	(m1)		
	$p = \frac{4}{5}$			
	$E \text{ prob } \frac{4}{5}$ $F \text{ prob } \frac{1}{5}$	(A1) CSO		
		CSO		
	Total		12	

Q			Solutio	on	Marks	Total	Comments
7(a)							
	Stage	State	From	Value			
	1	G	I	15			
		Н	I	12			
	2	E	G	15+15 = 30 ←			
			H	12+16=28	D.1		S. 2.1
					B1		Stage 2 values correct
		F	G	15+13=28			
			Н	12+17= 29 ←			
	3	В	E	30+16 = 46			
					M1		Calculating 4 values at stage 3
		С	E	30+14 = 44 ←	m1		Using max values at E and F
			F	29+12 = 41			
		D	Г	20 - 17 44			
		D	F	29+15 = 44	A1		All 4 values correct
				46+12 59			
	4	A	В	46+12 = 58			
			C	44+20= 64 ←			
			C	44+20− 04 ←			
			D	44+18 = 62	m1		Using max at C
			D	44+10 = 02	A1	7	All correct
					B1	7	Identifying 64 as maximum value
(b)	Route A	CFG	I		B1	1	
(0)	Noute A		1		D1	1	
				Total		8	

MIDUZ				
Q	Solution	Marks	Total	Comments
(8)(a) (b)(i)	ABEH 8 ACFH 5 ADGH 11 ACEH 2 ACGH 4 Either ADFH 1 and ABFH 2	B1 M1 A1 A1	1	One correct route and flow At least one other correct All correct
	Or $ADFH$ 3 $ \begin{array}{cccccccccccccccccccccccccccccccccc$	M1	5	Forward and back flows on diagram All correct
(ii)	Max flow 33	B1		
(c)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1	2	OE
	- Cut uniough DD, CD, 111, CO, DO	D 1	1	
	Total		9	
	TOTAL		75	
	IUIAL		13	

General Certificate of Education (A-level) June 2013

Mathematics

MD02

(Specification 6360)

Decision 2

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
−x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	B D D 9 14	14	E	$ \begin{array}{c cccc} & H & J \\ & 18 & 30 & 42 \\ \hline & I & K \\ & 26 & 30 & 30 & 42 \\ \hline \end{array} $
		14	G 26	$\frac{L}{30 42}$
		M1 A1		Forward pass, correct at <i>D</i> , <i>E</i> , <i>F</i> , <i>G</i> All correct
		M1 A1	4	Backward pass, correct at <i>H</i> , <i>I</i> , <i>G</i> ft All correct
(b)	C D G I J only	B1	1	
(c)	6	B1ft	1	Their (latest – earliest – 4)
(d)	H delayed by 4 K delayed by 5 New time 51	E1 B1 B1	3	51 scores 3/3
	Total		9	
2(a)	19	B1	1	
(b)	E	B1	1	
(c)	C	B1	1	
(d)	y = 13			
	z = 39	B1 × 3	3	
(e)	76	B1	1	
(f)	83	B1	1	
	Total		8	

0	Solution	Marks	Total	Comments
3(a)	Reduce columns			
	$ \begin{pmatrix} 0 & 12 & 13 & 2 & 0 \\ 25 & 32 & 11 & 20 & 20 \\ 5 & 12 & 2 & 8 & 25 \\ 15 & 17 & 21 & 35 & 15 \\ 0 & 0 & 0 & 0 & 7 \end{pmatrix} $ Reduce rows $ \begin{pmatrix} 0 & 12 & 13 & 2 & 0 \\ 14 & 21 & 0 & 9 & 9 \end{pmatrix} $	M1 A1		AG
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	3	
(b)	4 lines drawn on given table Subtract/add 2 (0 10 13 0 0) 14 19 0 7 9 3 8 0 4 23	B1 M1		Condone one slip
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1		Correct table with 4 lines shown Condone one slip
		A1	5	All correct with no errors seen, including 5 lines drawn
(c)	Match XA, WC + VD, YE, ZB or VE, YB, ZD	M1 A1 A1	3	And no extras
(d)	525	B1	1	
	Total		12	

Q		Solut	tion		Marks	Total	Comments
4	Stage	State	From	Value			
	1	Н	K	18			
		I	K	15	B1		All correct
		J	K	12			
	2	Ε	Н	(17)	M1		7 values at stage 2
			I	15	1		
		F	Н	(15)	m1		Choosing max at E , F , G (PI), but must be
			I	14			using maximin
			J	12			
		G	I	(14)	A1		All correct at stage 2
			J	12	AI		An correct at stage 2
	3	В	E	11	m1		7 values at stage 3, must have scored M2
			F	(13)			earlier
		C	E	12			
			F	13	A1		All correct at stage 3
			G	(14)			
		D	F	<u>(15)</u> 14			
	4	A	G B	12			
	4	A	C	(14)			
			D	13	A1		All correct (whole table)
			υ	13	B1		For 14 as final value indicated or stated
R	Route AC	GIK			В1	9	Or reverse
				Total		9	

Q	Solution	Marks	Total	Comments
5(a)	R min -4, -5, -2 plays C	B1		Either C or E stated
	J max 4, 1, 3 plays E	B1 E1	3	Both C and E stated and all values shown
		LI	3	and an values shown
(b)	maximin $R = -2 \neq 1 = minimax J$	E1	1	Correct values must be stated
(c)	(For Juliet,) col E dominates col D	E1	1	
(d)(i)	Signs changed as J gains = R losses Gains written as rows	E1 E1	2	
(ii)	Let J play E prob p F $(1-p)$			
	If R plays A, J wins $4p$ B $5p-3(1-p)$ C $-p+2(1-p)$ [gives $4p, 8p-3, 2-3p$]	M1 A1		2 correct expressions seen All correct
	2 1 0 -1 -2 -3	m1 A1		Must have 3 lines All correct with values shown
	Max at $8p - 3 = 2 - 3p$	m1		Identifies correct max from their graph
	$p = \frac{5}{11}$	A1		
	(J plays)E prob $\frac{5}{11}$, F prob $\frac{6}{11}$	A1 CSO	7	
(iii)	Value of game = $\frac{7}{11}$	B1	1	
	Total		15	

Q				Sol	ution				Marks	Total	Comments
6(a)	P 1 0 0 0	$ \begin{array}{c c} x \\ \hline -4 \\ \hline 2 \\ 1 \\ 1 \end{array} $	y -3 1 2	$ \begin{array}{c} z \\ -1 \\ 1 \\ 1 \\ 2 \end{array} $	r s 0 0 1 0 0 1 0 0	0 0 0 0		alue 0 25 40 30	B2,1,0	2	All correct, 3 rows correct
(b)	0	0	-1 $\frac{1}{2}$	$\frac{1}{2}$	$ \begin{array}{c} 2 \\ \frac{1}{2} \\ -\frac{1}{2} \end{array} $	0	0	50 25 2 55	B1 M1		Pivot, x-col: 12.5, 40, 30 seen and correct pivot chosen Row operations
	0	0	$\frac{\frac{3}{2}}{\frac{1}{2}}$	$\frac{1}{2}$ $\frac{3}{2}$	$-\frac{1}{2}$ $-\frac{1}{2}$	0	0	$\frac{25}{2}$ $\frac{55}{2}$ $\frac{35}{2}$	A1	3	All correct
(c)(i)	1	0	0	$\frac{4}{3}$	$\frac{5}{3}$	$\frac{2}{3}$	0	$\frac{205}{3}$	B1		Pivot, y-col: their 25, 55/3, 35 seen and correct pivot chosen
	0	1	0	$\frac{1}{3}$	$\frac{2}{3}$	$-\frac{1}{3}$	0	$\frac{10}{3}$	M1		Row operations
	0	0	1	$\frac{1}{3}$ $\frac{4}{3}$	$\frac{5}{3}$ $\frac{2}{3}$ $-\frac{1}{3}$ $-\frac{1}{3}$	$\frac{2}{3}$ $-\frac{1}{3}$	0	$ \begin{array}{r} 10\\ 3\\ 55\\ 3\\ 25\\ 3 \end{array} $	A1	3	All correct
(ii)	Max	$P = \frac{2}{}$	$\frac{05}{3}$						B1		Condone optimal, etc
	x =	$\frac{10}{3}$, y	$=\frac{55}{3},$	z = 0	0				B1		Ft on x and y
	r = 0	s = 0	$0, \ t = \frac{1}{2}$	$\frac{25}{3}$					B1ft	3	All 3 must be stated

Q				Sol	lution				Marks	Total	Comments
6	Alteri	native									Comments as above
(a)	P 1 0 0 0	х	у	Z	r	S	t	Value	-		
	1	_4	-3	-1	0	0	0	0			
	0	(2)	1	1	1	0	0	25 40			
	0	1	2	1	0	1	0			(2)	
<i>(</i> = \)	0	1	1	2	0	0	1	30			
(b)			_	_	_						
	1	0	-l	1	2	0	0	50			
	0	2	1	1	1	0	0	25			
	0	0	(3)	1	-1	2	0	55		(3)	
	1 0 0 0	0	1	3	-1	0	2	35			
(c)(i)											
	3	0	0	4	5	2	0	205			
	0	6	0	2	4	-2	0	20			
	0	0	3	1	-1	2	0	55		(2)	
	3 0 0 0	0	0	8	-2	-2	6	50		(3)	
(**)	n .	205									
(ii)	$P = \frac{1}{2}$	3									
	1	0	55								
	$x = -\frac{1}{2}$	$\frac{10}{2}$, y	$=\frac{33}{2}$, z =	= 0						
		3	3	_							
	$x = \frac{1}{r}$ $r = s$	= 0.	$t=\frac{2\pi}{2}$	5						(3)	
	, 5	٠,	3	}						(3)	
								Total		11	

Q	Solution	Marks	Total	Comments
7(a)	S T_1 T_1 T_2 T_3	B1 B1	2	Edges with values ≥ 56 , 52 Edges with values ≥ 36 , 26, 28
b(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A 1 1 14 18 18 6 8 6 12 16 2 20 0	0 ⁴ D 42	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		M1		initial diagram with forward/back flows
		A1		Fully correct diagram
	$SR_1 A D T_1 T = 4$ $SR_1 B D T_1 T = 2$ $SR_2 C E T_3 T = 6$ $SR_2 B E T_2 T = 4$	M1 A1	5	One correct path and flow At least one other correct path and flow all correct (ignore corrections to S and T)
(ii)	$S R_2 B E T_3 T = 4$ Max flow 90	B1		(ignore connections to S and T)
	R_1 10 B 8 T_1 10 B 8 T_2 R_2 20 E 18 20 E 18 20 E 18	B1	2	
(c)	Cut through (shown)	B1		PI by correct list
	$AT_1, DT_1, DT_2, ET_2, ET_3, CT_3$	B1	2	OE
	Total		11	
	TOTAL		75	

A-LEVEL **MATHEMATICS**

Decision 2 – MD02 Mark scheme

6360 June 2014

Version/Stage Final V1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
2(a)	Row min –4, 0, –5	M1		Attempt to find maximin and minimax
	Max (row min) = 0			
	Col max 5, 3, 0, 1			Accept 'F dominates G', col max $5, 3, 0$
	Min (col max) = 0	A1		All rowmin and colmax values correct and maximin and minimax identified
	Max (row min) = Min (col max) = 0	E 1		Full statement involving maximin and
	Hence game has a stable solution.			minimax and both values = 0
				If using dominance:
				Reduction to 2x2 M1
				Reduction to 1x1 A1
				Final statement E1
	Alex plays B			
	Roberto plays F	B 1	4	
(b)	Saddle point (P. F.) ONLY	B1	1	
(b)	Saddle point (B, F) ONLY	DI	1 -	
	Total		5	

Q	Solution	Mark	Total	Comment
3(a)	$C_1 = 60$ $C_2 = 80$	B1 B1	2	
(b)	e.g 15 15 15 15 15 15 15 15 15 15 15 15	M1 A1	2	Correct at D
(c)(i)		M1 A1		Correct to <i>D</i> , <i>E</i> , <i>F</i> either by inspection or flow augmentation All correct
	oe MAX = 45	B1	3	All correct
(ii)	Max flow = Min cut	B1 E1	2	Or { <i>A,B,D,E</i> } { <i>C,FG,H,IJ</i> } Must have scored B1,B1 in point (C)
	Total		9	

Q	Solution	Mark	Total	Comment
(b)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mark B1 B1 M1 A1	Total 2	Comment 1st and 2nd row correct 1st and 3rd row correct Correct pivot 'y, 3' chosen and 11/3, 21/4 seen Row operations All correct Correct pivot 'x, 5' chosen and 19/5, 11 seen Row operations
(d)	P = 25.8 z = r = t = 0 x = 3.8, y = 2.4	A1 B1 B1 B1	3 3 11	All correct

Q	Solution	Mark	Total	Comment
5(a)	A dominates B	E 1	1	
(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E1		Use of '1– <i>p</i> – <i>q</i> '
	Mark plays A, Owen loses $4p + q + -1(1-p-q)$ Mark plays C, Owen loses $-2p + 3(1-p-q)$ 5p + 2q = 1.6	M1 A1 m1		One correct expression or reverse Both correct or reverse Correct use of 0.6 (or -0.6) Condone simplified equations
	-5p - 3q = -2.4 q = 0.8 p = 0 1-p-q = 0.2	A1 A1	7	2 correct equations At least 2 correct
	Owen plays D with prob 0 Owen plays E with prob 0.8 Owen plays F with prob 0.2 Total	B1	8	All correct in context of <i>D</i> , <i>E</i> , <i>F</i>

Q	Solution	Mark	Total	Comment
6(a)	Stage 2	B1		4 correct values
		M1		Choosing 2 'mins' out of 4 expressions
	Stage 3	m1		4 expressions
		A1		EG chosen
	Stage 4	m1		4 expressions, 1 in terms of <i>x</i>
	Stage 5	B1		Final value 48, indicated or stated
		A1	7	All correct (complete table)
(b)	x + 41 = 48	M1		Their $(x + 8 + k)$ = their (min)
	x = 7	A1	2	
(c)	ABDGIK ABEGIK ACFHIK	B1 B1 B1	3	Condone reverse (x3)
	Total		12	

Stage	State	From	Calculation	Value
1	I	K	12	12
	J	K	14	14
2	G	I	15 + 12	27
		J	14 + 14	(28)
	Н	I	12 + 13	25
		J	14 + 12	(26)
3	D	G	27 + x + 2	29 + x
	E	G	27 + 9	36
		Н	25 + 12	(37)
	F	Н	25 + 13	38
4	В	D	29 + x + 4	33 + x
		E	36 + 4	40
	C	E	36 + 9	(45)
		F	38 + 6	44
5	\boldsymbol{A}	В	33 + x + 8	41 + x
		В	40 + 8	48
	A	C	44 + 4	48

Q	Solution	Mark	Total	Comment
7(a)	Row minima: $(x + 4), (x + 2), (x + 5)$	M1 A1	2	1 correct All 3 correct
(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 A1		Using correct/'their' row minima 3 rows correct All correct
	Reduce cols to give $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1		3 rows correct All correct
(c)	4 lines needed to cover 0's Match AZ , BW , CY , DX stated $4x+14=42$ $x=7$	E1 B1 M1 A1	7	oe Their expression = 42
	Total	111	11	

Q	Solution	Mark	Total	Comment
0(=)	4			
8(a)	x = 4			
	y = 17	B1	_	Any 2 correct
	z = 17	B1	2	All 3 correct
(b)	BDGIK	B1	1	
c(i)	Reduce G to 5 (as critical) oe	E 1		Decrease G by 3
	Reduce <i>F</i> to 4 or 5	E 1		Decrease <i>F</i> by 2 or 3
	Reduce F to 5	E1		Decrease F by 2
	11000001 1000	131		Condone new values shown on diagram
	Don't reduce E (as path through E still not critical)	E 1		Condone new varies shown on diagram
(ii)	25 (weeks)	B1		
(iii)	Cost $(3 \times 6 + 2 \times 7)$ PI by 32	M1		
	$= £32\ 000$	A1	7	
	Total		10	
	TOTAL		75	

A-LEVEL Mathematics

Decision 2 – MD02 Mark scheme

6360 June 2015

Version/Stage: Version 1.0: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
Е	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

1a	Activity A	Pred	lecessor(s)			
			10003301(3)			
		-				
	В					
	<u>C</u>		-			
	<u>D</u>		A, B	B1		All correct
	E F		В	Β,		All correct
	<u></u> G		B, C D			
	<u> </u>		D, E, F			
			G, H			
	J		G, H		1	
			0,			
1b A	Activity E	Early	Late			
	Α	0	7	M1		Forward pass, correct at G and H.
	В	0	5	A 1		All correct
	С	0	5			
	D	7	13			
	E F	5	13			
	G	5 13	13 19	М1		Back pass correct at D, E, F from their
	Н	13	19			final total time
	1	19	28	A1ft		All correct
	J	19	28			
			20		4	
1c A	DHJ			B1		One correct
	FHJ			B1	2	Both correct, and no more
	1110			٥.	_	Both contoot, and no more
1d 1				B1	1	
	CA			M1		Must be Gantt diagram
	se of floats			B1	•	Two of C, E, G, I correct
AI	II correct			A 1	3	
1f 65	5 (hours)			B1	1	
1g 34	4 (hours)			M1		
W	Vorker 1: A, C					
W	Vorker 2: B, E	E, D, H, I		A 1	2	Or any other correct allocation
			Total		14	

Q2	Solution	Mark	Total	Comment
2a	Stan: Row(min) (-3, -4, -3) Max(min) -3	B1*		Earned here,
	Playsafe 'A or C'	B1		all 3 values seen and -3 highlighted or stated, or BOTH correct playsafe stated. Both needed
	Christine: Col(max) (3, 0, 2, 3) Min(max) 0	(B1)*		Or here, all 4 values seen and 0 highlighted or
	Playsafe E	B1	3	stated, or correct playsafe stated
2b	Maximin = -3 ≠ 0 = Minimax	E1	1	
2c	Col E 'dominates' Col D Col F 'dominates' Col G Original matrix shows Christine's losses, but as zero-sum game multiply by -1 to show Christine's gains	E1 E1 E1		
	Matrix transposed as now seen from Christine's perspective	E1	4	
	Total		8	

Q3	Solution	Mark	Total	Comment			
3	Add extra column	B1		with all values the same, at least 10.31			
	Reduce cols:						
	0 0 0 0	М1		At least 3 cols correct.			
	0.44 0.15 0.26 0.35 0						
	0.47 0.2 0.24 0.48 0						
	0.2 0.16 0.21 0.31 0						
	0.07 0.04 0.11 0.04 0	A 1		All correct			
		_					
	Reduce by 0.04 (Covered with 2 lines),	m1		PI, by values in following matrix			
	0 0 0 0 0.04						
	0.4 0.11 0.22 0.31 0						
	0.43 0.16 0.2 0.44 0						
	0.16 0.12 0.17 0.27 0	A 1		All correct			
	0.03 0 0.07 0 0	Α1		All correct			
	Reduce by 0.11, (Covered with 3 lines)	m1		PI, by values in following matrix			
	Treduce by 0.11, (Covered with 3 lines)			FI, by values in following matrix			
	0 0 0 0 0.15						
	0.29 0 0.11 0.2 0						
	0.32 0.05 0.09 0.33 0						
	0.05 0.01 0.06 0.16 0						
	0.03 0 0.07 0 0.11						
	0.00 0 0.01 0 0.11						
	Reduce by 0.05 (in 1 or more	m1		Or,			
	iterations) (Covered with 4 lines)			Reduce by 0.01 (Covered with 4 lines)			
				,			
	0 0.05 0 0 0.2			0 0 0 0 0.16			
	0.24 0 0.06 0.15 0			0.29 0 0.11 0.2 0.01			
	0.27 0.05 0.04 0.28 0			0.31 0.04 0.08 0.32 0			
	0 0.01 0.01 0.11 0			0.04 0 0.05 0.15 0			
	0.03 0.05 0.07 0 0.16			0.03 0 0.07 0 0.12			
				AND			
				Covered with 4 lines, reduce by 0.04			
				0 0.04 0 0 0.20			
				0.25 0 0.07 0.16 0.01			
				0.27 0.04 0.04 0.28 0 0 0 0.01 0.11 0			
	Correct final matrix, with no errors			0.03 0.04 0.07 0 0.16			
	seen	A 1		There are other correct combinations			
		, i		but must reduce by 0.05			
				Sat made roadoo by 0.00			
	Covered by 5 lines, (so optimal)	E1		Must see statement			
	(Match) A3, B2, D1, E4	B1		Condone C5			
	(Time) 36.82 (secs)	B1					
	Total		11				

Q 4					Solu	ition				Mark	Total	Comment
4a	P 1 0	x -2 1	у -3 1	z -4 2	1	t 0 0	0 0	V 0 20		M1		3 rows correct
	0	2	3	1	0	0	1	40		A1	2	All correct
bi	Row 20/2), 3	30/1 (=	: 30),	40/1 ((= 40)		B1 E1	2	May be seen in part (a)
b		III follo y row		wn		2 2	oept a	0	ultiple 40			
ii	0	0.5	0.	5	1	0.5	0	0	10	M1		SCA – row reduction, 1 row correct (other than pivot row - shaded)
	0	2.5	1.	5	0	-0.5	1	0	20	A1 A1		3 rows correct All 4 correct
	0	1.5	2.	5	0	-0.5	0	1	30		3	
	OR										S	
	1	0	-1	0	2	0	0	40				As above
	0	1	1	2	1	0	0	20				
	0	5	3	0	-1	2	0	40				
	0	3	5	0	-1	0	2	60	-			

ci	Pivot from <i>y</i> -col 10/0.5 (= 20), 20/1.5 (= 13.3), 30/2.5 (= 12)									B1ft		May be seen in part (b)(ii)
	1	0.6		0	0	1.8	0	0.4	4 52	—		CCA many maduration 4 many commant
	0	0.2		0	1	0.6	0	-0.		— m1		SCA – row reduction, 1 row correct (other than pivot row - shaded),
	0	1.6		0	0	-0.2	1	-0.		Ш		must have scored at least M1 in (b)(ii), but allow any one row correct
	0	0.6		1	0	-0.2	0	0.4	1 12			from a previous error
	OR									A 1	3	All 4 correct
		3 2 16 3		0 10 0	13.3) 9 6 -2 -1	0 10	= 12 2 -2 -6 2	260 40 20 60				As above
ii	For this part, answers must be from a row of 'positives' in 'profit' Max/Optimal $P = 52$ $x = 0$, $y = 12$, $z = 4$ $r = 0$, $t = 2$, $u = 0$									B1ft B1ft B1ft	3	Must include Max/Optimal Must be non-negative values
									Tota		13	

Q5		Sc	lution		Mark	Total	Comment
5a	Stage	State	From	Value			
	1	Н	K	2.7			
		I	K	2.3			
		J	K	2.5			
	2	Е	Н	2.7	5.4		
			I	2.4*	B1		7 values at stage 2
		F	Н	2.7	M1		Using minimax – choosing at least 2 of
			I	2.6			EI, FJ, GI
			J	2.5*			(PI by values seen at stage 3)
		G	I	2.6*			
			J	2.9	A 1		All values correct at stage 2
					71		All values correct at stage 2
	3	В	Е	2.8			
			F	2.7*	B1		7 values at stage 3
		С	Е	2.8	m1		At least 5 values correct
			F	2.5*			, a load o value ou loca
			G	2.6			
		D	F	2.8			
			G	2.7*	A 1		All values correct at stage 3
	4	Α	В	2.7			
			С	2.5*	B1		3 values at stage 4
			D	2.7	A 1		All correct, with 2.5 identified as min
			<u> </u>				
	Route A	CFJK			B1		In this order and not reverse
						9	
b	(Tom's re	oute) AC	GIK		B1		In this order and not reverse
	(Max hei	ght) 260	0 metres	oe	B1	2	Must have units
				Total		11	

Q6	Solution	Mark	Total	Comment
6a	100	B1	1	
bi	Path Value ABDGJ 3 ABDEGJ 1 AEHJ 3 AEGJ 1 AFIJ 5 AEIJ 5 Oe these are examples of a set of complete flows, but they are not	M1 A1 A1	1	Correct initial diagram on AB, AE, AC Showing forward and back flows One correct path (including value) 3 correct paths (including values) Total increase in flows of exactly 18 Fully correct diagram
	unique		5	
			3	
ii	Max flow 118 Correct diagram	M1 A1	2	
С	Cut through GJ, GH, EH, EI, FI Edges listed	B1 B1	2	Could be shown on diagram
d	Current flow is 35, subtract 5 113	E1 B1	2	113 scores 2/2
	Total			

Q	Solution	Mark	Total	Comment
7	Marks for this question can be earned in either order			Eg, finding x first from simult equs.
а	Arsene plays A with prob p, plays B with prob 1-p			
	Jose plays C: A wins $p(x+3) + (1-p)(x+1)$	B1		oe could be seen in part (b)
	Jose plays D: A wins p + 3(1-p)	B1		oe
	p + 3(1-p) = 2.5	M1		
	(p = 0.25) Arsene plays A with prob 0.25 Arsene plays B with prob 0.75	A1	4	Need both statements
b	0.25(x+3) + 0.75(x+1) = 2.5	M1		Replacing p by 0.25 in a correct expression, and equating to 2.5
	x = 1	A 1	2	expression, and equating to 2.0
	Total		6	